Weight gain since age of 20 as risk of metabolic syndrome even in non-overweight individuals View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-09-30

AUTHORS

Yoshitaka Hashimoto, Masahide Hamaguchi, Takuya Fukuda, Akihiro Obora, Takao Kojima, Michiaki Fukui

ABSTRACT

PurposeMetabolic syndrome (MetS), regardless of the presence of obesity, is known as a risk of diabetes and cardiovascular disease. Weight gain after age 20 reported to be associated with these diseases. Impact of the difference between the body mass index (BMI) at examination and BMI at age 20 (ΔBMIexa−20y) on MetS, especially in non-overweight individuals, remains to be elucidated.MethodsWe analyzed the data of 24,363 individuals (14,301 men and 10,062 women) in this cross-sectional study. The diagnosis of MetS was diagnosed when three or more of the following criteria were present: hypertension, hyperglycemia, hypertriglyceridemia, low HDL-cholesterol level, and abdominal obesity. Logistic regression was performed to calculate odds ratios (ORs) and 95% confidence intervals (CIs) adjusting for age, alcohol, smoking, exercise, and BMI at examination.ResultsCompared to the lowest ΔBMIexa−20y tertile (ΔBMIexa−20y < 1.2 kg/m2 in men and ≤0 kg/m2 in women), the highest tertile (ΔBMIexa−20y ≥ 3.2 kg/m2 in men and ≥2.0 kg/m2 in women) was associated with the risk of the presence of MetS (multivariate OR = 1.80, 95%CI 1.53–2.11, p < 0.001 in men and OR = 3.27, 95%CI 2.22–4.96, p < 0.001 in women). This result was also applicable in non-overweight individuals (multivariate OR = 2.06, 95%CI 1.46–2.92, p < 0.001 in men and OR = 2.49, 95%CI 1.40–4.64, p < 0.001 in women).ConclusionsOur analyses showed that ΔBMIexa−20y is associated with the risk of the presence of MetS, even in non-overweight individuals. It is thus important to check weight changes from early adulthood, even in non-overweight individuals. More... »

PAGES

253-261

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12020-017-1411-5

DOI

http://dx.doi.org/10.1007/s12020-017-1411-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092003067

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28965186


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Mass Index", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Body Weight", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cholesterol, HDL", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cross-Sectional Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hyperglycemia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hypertension", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hypertriglyceridemia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolic Syndrome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Obesity, Abdominal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Weight Gain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hashimoto", 
        "givenName": "Yoshitaka", 
        "id": "sg:person.01350130006.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350130006.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Diabetology, Kameoka Municipal Hospital, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Diabetology, Kameoka Municipal Hospital, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hamaguchi", 
        "givenName": "Masahide", 
        "id": "sg:person.01013261701.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013261701.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fukuda", 
        "givenName": "Takuya", 
        "id": "sg:person.0750162736.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750162736.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Gastroenterology, Murakami Memorial Hospital, Asahi University, Gifu, Japan", 
          "id": "http://www.grid.ac/institutes/grid.411456.3", 
          "name": [
            "Department of Gastroenterology, Murakami Memorial Hospital, Asahi University, Gifu, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Obora", 
        "givenName": "Akihiro", 
        "id": "sg:person.0757324346.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757324346.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Gastroenterology, Murakami Memorial Hospital, Asahi University, Gifu, Japan", 
          "id": "http://www.grid.ac/institutes/grid.411456.3", 
          "name": [
            "Department of Gastroenterology, Murakami Memorial Hospital, Asahi University, Gifu, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kojima", 
        "givenName": "Takao", 
        "id": "sg:person.01300177767.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300177767.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fukui", 
        "givenName": "Michiaki", 
        "id": "sg:person.016357516722.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016357516722.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00125-012-2639-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052384345", 
          "https://doi.org/10.1007/s00125-012-2639-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00592-012-0445-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015392427", 
          "https://doi.org/10.1007/s00592-012-0445-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40519-015-0215-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047921692", 
          "https://doi.org/10.1007/s40519-015-0215-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047374084", 
          "https://doi.org/10.1038/nature06902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006317191", 
          "https://doi.org/10.1038/nature05488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.ijo.0803686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040948920", 
          "https://doi.org/10.1038/sj.ijo.0803686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12020-015-0587-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019179250", 
          "https://doi.org/10.1007/s12020-015-0587-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-09-30", 
    "datePublishedReg": "2017-09-30", 
    "description": "PurposeMetabolic syndrome (MetS), regardless of the presence of obesity, is known as a risk of diabetes and cardiovascular disease. Weight gain after age 20 reported to be associated with these diseases. Impact of the difference between the body mass index (BMI) at examination and BMI at age 20 (\u0394BMIexa\u221220y) on MetS, especially in non-overweight individuals, remains to be elucidated.MethodsWe analyzed the data of 24,363 individuals (14,301 men and 10,062 women) in this cross-sectional study. The diagnosis of MetS was diagnosed when three or more of the following criteria were present: hypertension, hyperglycemia, hypertriglyceridemia, low HDL-cholesterol level, and abdominal obesity. Logistic regression was performed to calculate odds ratios (ORs) and 95% confidence intervals (CIs) adjusting for age, alcohol, smoking, exercise, and BMI at examination.ResultsCompared to the lowest \u0394BMIexa\u221220y tertile (\u0394BMIexa\u221220y\u2009<\u20091.2\u2009kg/m2 in men and \u22640\u2009kg/m2 in women), the highest tertile (\u0394BMIexa\u221220y\u2009\u2265\u20093.2\u2009kg/m2 in men and \u22652.0\u2009kg/m2 in women) was associated with the risk of the presence of MetS (multivariate OR\u2009=\u20091.80, 95%CI 1.53\u20132.11, p\u2009<\u20090.001 in men and OR\u2009=\u20093.27, 95%CI 2.22\u20134.96, p\u2009<\u20090.001 in women). This result was also applicable in non-overweight individuals (multivariate OR\u2009=\u20092.06, 95%CI 1.46\u20132.92, p\u2009<\u20090.001 in men and OR\u2009=\u20092.49, 95%CI 1.40\u20134.64, p\u2009<\u20090.001 in women).ConclusionsOur analyses showed that \u0394BMIexa\u221220y is associated with the risk of the presence of MetS, even in non-overweight individuals. It is thus important to check weight changes from early adulthood, even in non-overweight individuals.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s12020-017-1411-5", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1112251", 
        "issn": [
          "1355-008X", 
          "1559-0100"
        ], 
        "name": "Endocrine", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "58"
      }
    ], 
    "keywords": [
      "non-overweight individuals", 
      "body mass index", 
      "presence of MetS", 
      "odds ratio", 
      "age 20", 
      "low HDL cholesterol levels", 
      "weight gain", 
      "presence of obesity", 
      "diagnosis of MetS", 
      "risk of diabetes", 
      "HDL cholesterol levels", 
      "confidence intervals", 
      "cross-sectional study", 
      "PurposeMetabolic syndrome", 
      "abdominal obesity", 
      "metabolic syndrome", 
      "mass index", 
      "cardiovascular disease", 
      "logistic regression", 
      "weight change", 
      "early adulthood", 
      "ConclusionsOur analysis", 
      "MetS", 
      "obesity", 
      "syndrome", 
      "risk", 
      "disease", 
      "age", 
      "examination", 
      "individuals", 
      "hypertension", 
      "tertile", 
      "hypertriglyceridemia", 
      "hyperglycemia", 
      "smoking", 
      "diabetes", 
      "ResultsCompared", 
      "MethodsWe", 
      "diagnosis", 
      "adulthood", 
      "exercise", 
      "presence", 
      "regression", 
      "interval", 
      "index", 
      "levels", 
      "differences", 
      "criteria", 
      "study", 
      "alcohol", 
      "gain", 
      "changes", 
      "data", 
      "ratio", 
      "impact", 
      "analysis", 
      "results"
    ], 
    "name": "Weight gain since age of 20 as risk of metabolic syndrome even in non-overweight individuals", 
    "pagination": "253-261", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092003067"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12020-017-1411-5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28965186"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12020-017-1411-5", 
      "https://app.dimensions.ai/details/publication/pub.1092003067"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T17:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_744.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s12020-017-1411-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12020-017-1411-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12020-017-1411-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12020-017-1411-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12020-017-1411-5'


 

This table displays all metadata directly associated to this object as RDF triples.

255 TRIPLES      21 PREDICATES      106 URIs      91 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12020-017-1411-5 schema:about N23b415632917468a80698f647db47645
2 N4744305225d74aaaac3d31317ea1c509
3 N59becba204ba45899091cd87bd046da8
4 N603093418fbd434c806748bb0eab5781
5 N648cdfe69351406c87a244f778b5d7d0
6 N65dd28accc9344d5bf8315d7f8f8b5a5
7 N7f5c8812aeb4415ea1e1eaeb93552a77
8 N963d1b6d613b4509a55b73aeb6b64654
9 Na81cdf1f04254cce82c84f5f954ae60e
10 Nabca5004bc1b40c0a4ce0bce13b19c91
11 Naed6cf4b73554d5fa49f051b34fa8200
12 Nb355f19ae3e243efbd1ad6c1a41c9e53
13 Nb92bbc531c57477f97cf5a0dfdc2da61
14 Nc3d8d9278bfc497387aa4a04c9487c1a
15 Nd68ebafa77d2465892564a98bb503302
16 Nd6c8b73e303b42039748200fed927443
17 Nfe6b930fa74845ad87b7a38541edef15
18 anzsrc-for:11
19 anzsrc-for:1117
20 schema:author N87866dcd46274316a0720b72f5f2b690
21 schema:citation sg:pub.10.1007/s00125-012-2639-5
22 sg:pub.10.1007/s00592-012-0445-7
23 sg:pub.10.1007/s12020-015-0587-9
24 sg:pub.10.1007/s40519-015-0215-y
25 sg:pub.10.1038/nature05488
26 sg:pub.10.1038/nature06902
27 sg:pub.10.1038/sj.ijo.0803686
28 schema:datePublished 2017-09-30
29 schema:datePublishedReg 2017-09-30
30 schema:description PurposeMetabolic syndrome (MetS), regardless of the presence of obesity, is known as a risk of diabetes and cardiovascular disease. Weight gain after age 20 reported to be associated with these diseases. Impact of the difference between the body mass index (BMI) at examination and BMI at age 20 (ΔBMIexa−20y) on MetS, especially in non-overweight individuals, remains to be elucidated.MethodsWe analyzed the data of 24,363 individuals (14,301 men and 10,062 women) in this cross-sectional study. The diagnosis of MetS was diagnosed when three or more of the following criteria were present: hypertension, hyperglycemia, hypertriglyceridemia, low HDL-cholesterol level, and abdominal obesity. Logistic regression was performed to calculate odds ratios (ORs) and 95% confidence intervals (CIs) adjusting for age, alcohol, smoking, exercise, and BMI at examination.ResultsCompared to the lowest ΔBMIexa−20y tertile (ΔBMIexa−20y < 1.2 kg/m2 in men and ≤0 kg/m2 in women), the highest tertile (ΔBMIexa−20y ≥ 3.2 kg/m2 in men and ≥2.0 kg/m2 in women) was associated with the risk of the presence of MetS (multivariate OR = 1.80, 95%CI 1.53–2.11, p < 0.001 in men and OR = 3.27, 95%CI 2.22–4.96, p < 0.001 in women). This result was also applicable in non-overweight individuals (multivariate OR = 2.06, 95%CI 1.46–2.92, p < 0.001 in men and OR = 2.49, 95%CI 1.40–4.64, p < 0.001 in women).ConclusionsOur analyses showed that ΔBMIexa−20y is associated with the risk of the presence of MetS, even in non-overweight individuals. It is thus important to check weight changes from early adulthood, even in non-overweight individuals.
31 schema:genre article
32 schema:isAccessibleForFree false
33 schema:isPartOf Na5fc6d8d311b4e7299c12edb6f1ea890
34 Ncf050eb5bc914cd39e1dacaa6887e691
35 sg:journal.1112251
36 schema:keywords ConclusionsOur analysis
37 HDL cholesterol levels
38 MetS
39 MethodsWe
40 PurposeMetabolic syndrome
41 ResultsCompared
42 abdominal obesity
43 adulthood
44 age
45 age 20
46 alcohol
47 analysis
48 body mass index
49 cardiovascular disease
50 changes
51 confidence intervals
52 criteria
53 cross-sectional study
54 data
55 diabetes
56 diagnosis
57 diagnosis of MetS
58 differences
59 disease
60 early adulthood
61 examination
62 exercise
63 gain
64 hyperglycemia
65 hypertension
66 hypertriglyceridemia
67 impact
68 index
69 individuals
70 interval
71 levels
72 logistic regression
73 low HDL cholesterol levels
74 mass index
75 metabolic syndrome
76 non-overweight individuals
77 obesity
78 odds ratio
79 presence
80 presence of MetS
81 presence of obesity
82 ratio
83 regression
84 results
85 risk
86 risk of diabetes
87 smoking
88 study
89 syndrome
90 tertile
91 weight change
92 weight gain
93 schema:name Weight gain since age of 20 as risk of metabolic syndrome even in non-overweight individuals
94 schema:pagination 253-261
95 schema:productId Na992782d9c9b4f4cbf82631fa3b59a6f
96 Nbbae3e098ebe41048b463cd0fcd12344
97 Ne7110df4a023433aa332e19e128ec9ff
98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092003067
99 https://doi.org/10.1007/s12020-017-1411-5
100 schema:sdDatePublished 2022-08-04T17:06
101 schema:sdLicense https://scigraph.springernature.com/explorer/license/
102 schema:sdPublisher N742305ccfb5b4609b7eb7f502419a688
103 schema:url https://doi.org/10.1007/s12020-017-1411-5
104 sgo:license sg:explorer/license/
105 sgo:sdDataset articles
106 rdf:type schema:ScholarlyArticle
107 N23b415632917468a80698f647db47645 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Weight Gain
109 rdf:type schema:DefinedTerm
110 N2ab725675fd54d0cb33817f0b554eaaf rdf:first sg:person.0757324346.38
111 rdf:rest Nd403338e7f444838aa8cac7b266cbbb1
112 N4744305225d74aaaac3d31317ea1c509 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Hyperglycemia
114 rdf:type schema:DefinedTerm
115 N510791f63d7e416fb73fd3836c39c41c rdf:first sg:person.0750162736.53
116 rdf:rest N2ab725675fd54d0cb33817f0b554eaaf
117 N59becba204ba45899091cd87bd046da8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Body Weight
119 rdf:type schema:DefinedTerm
120 N603093418fbd434c806748bb0eab5781 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Cross-Sectional Studies
122 rdf:type schema:DefinedTerm
123 N648cdfe69351406c87a244f778b5d7d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Humans
125 rdf:type schema:DefinedTerm
126 N65dd28accc9344d5bf8315d7f8f8b5a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Body Mass Index
128 rdf:type schema:DefinedTerm
129 N742305ccfb5b4609b7eb7f502419a688 schema:name Springer Nature - SN SciGraph project
130 rdf:type schema:Organization
131 N7f5c8812aeb4415ea1e1eaeb93552a77 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Hypertension
133 rdf:type schema:DefinedTerm
134 N87866dcd46274316a0720b72f5f2b690 rdf:first sg:person.01350130006.64
135 rdf:rest Nde8d16fb6ad14ef195b6e81f7cd7b962
136 N963d1b6d613b4509a55b73aeb6b64654 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Female
138 rdf:type schema:DefinedTerm
139 Na4fb474affc349c1ab2d99600d4693d6 rdf:first sg:person.016357516722.38
140 rdf:rest rdf:nil
141 Na5fc6d8d311b4e7299c12edb6f1ea890 schema:volumeNumber 58
142 rdf:type schema:PublicationVolume
143 Na81cdf1f04254cce82c84f5f954ae60e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Obesity, Abdominal
145 rdf:type schema:DefinedTerm
146 Na992782d9c9b4f4cbf82631fa3b59a6f schema:name doi
147 schema:value 10.1007/s12020-017-1411-5
148 rdf:type schema:PropertyValue
149 Nabca5004bc1b40c0a4ce0bce13b19c91 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Adult
151 rdf:type schema:DefinedTerm
152 Naed6cf4b73554d5fa49f051b34fa8200 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Middle Aged
154 rdf:type schema:DefinedTerm
155 Nb355f19ae3e243efbd1ad6c1a41c9e53 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Young Adult
157 rdf:type schema:DefinedTerm
158 Nb92bbc531c57477f97cf5a0dfdc2da61 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Cholesterol, HDL
160 rdf:type schema:DefinedTerm
161 Nbbae3e098ebe41048b463cd0fcd12344 schema:name dimensions_id
162 schema:value pub.1092003067
163 rdf:type schema:PropertyValue
164 Nc3d8d9278bfc497387aa4a04c9487c1a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Hypertriglyceridemia
166 rdf:type schema:DefinedTerm
167 Ncf050eb5bc914cd39e1dacaa6887e691 schema:issueNumber 2
168 rdf:type schema:PublicationIssue
169 Nd403338e7f444838aa8cac7b266cbbb1 rdf:first sg:person.01300177767.89
170 rdf:rest Na4fb474affc349c1ab2d99600d4693d6
171 Nd68ebafa77d2465892564a98bb503302 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Metabolic Syndrome
173 rdf:type schema:DefinedTerm
174 Nd6c8b73e303b42039748200fed927443 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Male
176 rdf:type schema:DefinedTerm
177 Nde8d16fb6ad14ef195b6e81f7cd7b962 rdf:first sg:person.01013261701.08
178 rdf:rest N510791f63d7e416fb73fd3836c39c41c
179 Ne7110df4a023433aa332e19e128ec9ff schema:name pubmed_id
180 schema:value 28965186
181 rdf:type schema:PropertyValue
182 Nfe6b930fa74845ad87b7a38541edef15 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Risk Factors
184 rdf:type schema:DefinedTerm
185 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
186 schema:name Medical and Health Sciences
187 rdf:type schema:DefinedTerm
188 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
189 schema:name Public Health and Health Services
190 rdf:type schema:DefinedTerm
191 sg:journal.1112251 schema:issn 1355-008X
192 1559-0100
193 schema:name Endocrine
194 schema:publisher Springer Nature
195 rdf:type schema:Periodical
196 sg:person.01013261701.08 schema:affiliation grid-institutes:None
197 schema:familyName Hamaguchi
198 schema:givenName Masahide
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013261701.08
200 rdf:type schema:Person
201 sg:person.01300177767.89 schema:affiliation grid-institutes:grid.411456.3
202 schema:familyName Kojima
203 schema:givenName Takao
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300177767.89
205 rdf:type schema:Person
206 sg:person.01350130006.64 schema:affiliation grid-institutes:grid.272458.e
207 schema:familyName Hashimoto
208 schema:givenName Yoshitaka
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350130006.64
210 rdf:type schema:Person
211 sg:person.016357516722.38 schema:affiliation grid-institutes:grid.272458.e
212 schema:familyName Fukui
213 schema:givenName Michiaki
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016357516722.38
215 rdf:type schema:Person
216 sg:person.0750162736.53 schema:affiliation grid-institutes:grid.272458.e
217 schema:familyName Fukuda
218 schema:givenName Takuya
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750162736.53
220 rdf:type schema:Person
221 sg:person.0757324346.38 schema:affiliation grid-institutes:grid.411456.3
222 schema:familyName Obora
223 schema:givenName Akihiro
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757324346.38
225 rdf:type schema:Person
226 sg:pub.10.1007/s00125-012-2639-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052384345
227 https://doi.org/10.1007/s00125-012-2639-5
228 rdf:type schema:CreativeWork
229 sg:pub.10.1007/s00592-012-0445-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015392427
230 https://doi.org/10.1007/s00592-012-0445-7
231 rdf:type schema:CreativeWork
232 sg:pub.10.1007/s12020-015-0587-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019179250
233 https://doi.org/10.1007/s12020-015-0587-9
234 rdf:type schema:CreativeWork
235 sg:pub.10.1007/s40519-015-0215-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1047921692
236 https://doi.org/10.1007/s40519-015-0215-y
237 rdf:type schema:CreativeWork
238 sg:pub.10.1038/nature05488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006317191
239 https://doi.org/10.1038/nature05488
240 rdf:type schema:CreativeWork
241 sg:pub.10.1038/nature06902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047374084
242 https://doi.org/10.1038/nature06902
243 rdf:type schema:CreativeWork
244 sg:pub.10.1038/sj.ijo.0803686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040948920
245 https://doi.org/10.1038/sj.ijo.0803686
246 rdf:type schema:CreativeWork
247 grid-institutes:None schema:alternateName Department of Diabetology, Kameoka Municipal Hospital, Kyoto, Japan
248 schema:name Department of Diabetology, Kameoka Municipal Hospital, Kyoto, Japan
249 rdf:type schema:Organization
250 grid-institutes:grid.272458.e schema:alternateName Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
251 schema:name Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
252 rdf:type schema:Organization
253 grid-institutes:grid.411456.3 schema:alternateName Department of Gastroenterology, Murakami Memorial Hospital, Asahi University, Gifu, Japan
254 schema:name Department of Gastroenterology, Murakami Memorial Hospital, Asahi University, Gifu, Japan
255 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...