Validation of dynamic risk stratification in pediatric differentiated thyroid cancer View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-10

AUTHORS

Seo Young Sohn, Young Nam Kim, Hye In Kim, Tae Hyuk Kim, Sun Wook Kim, Jae Hoon Chung

ABSTRACT

PURPOSE: There has been increasing interest in a risk-adopted management strategy known as dynamic risk stratification following the revised American Thyroid Association guidelines for differentiated thyroid cancer. We aimed to evaluate the usefulness of dynamic risk stratification for predicting structural disease in pediatric differentiated thyroid cancer patients. METHODS: We retrospectively reviewed 130 pediatric differentiated thyroid cancer patients (≤19 years) who were treated between 1996 and 2015 at Samsung Medical Center. Patients were stratified according to three American Thyroid Association initial risk group (low, intermediate, or high risk) and four dynamic risk stratification group (excellent, indeterminate, biochemical incomplete, or structural incomplete). RESULTS: Based on dynamic risk stratification strategy, structural disease was identified 3.9% in the excellent group, 9.7% in the indeterminate group, 76.9% in the biochemical incomplete group, and 100% in the structural incomplete group. The hazard ratios of the structural disease were 18.10 (P < 0.001) in the biochemical incomplete group, and 19.583 (P < 0.001) in the structural incomplete group compared to the excellent group. The prevalence of structural disease also increased as American Thyroid Association initial risk classification increased (5.9% in the low-risk group, 13.6% in the intermediate-risk group, and 45% in the high-risk group). The hazard ratios of structural disease in the high-risk group was 10.296 (P < 0.001) in compared to the low-risk group. CONCLUSION: Dynamic risk stratification based on patient responses to initial therapy was able to effectively predict the risk of structural disease in a pediatric population, and as a follow-up strategy, may work as well in pediatric differentiated thyroid cancer patients as it does in adult differentiated thyroid cancer patients. More... »

PAGES

167-175

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s12020-017-1381-7

DOI

http://dx.doi.org/10.1007/s12020-017-1381-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091242586

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28822062


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Combined Modality Therapy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Disease-Free Survival", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Iodine Radioisotopes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Metastasis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proportional Hazards Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Risk Assessment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thyroid Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Thyroidectomy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Treatment Outcome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Myongji Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416355.0", 
          "name": [
            "Department of Endocrinology and Metabolism, Seonam University, Myongji Hospital, Goyang, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sohn", 
        "givenName": "Seo Young", 
        "id": "sg:person.0733730706.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733730706.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Division of Endocrinology and Metabolism, Department of Medicine, Thyroid Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Young Nam", 
        "id": "sg:person.01361372134.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361372134.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Division of Endocrinology and Metabolism, Department of Medicine, Thyroid Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Hye In", 
        "id": "sg:person.011410557201.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011410557201.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Division of Endocrinology and Metabolism, Department of Medicine, Thyroid Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Tae Hyuk", 
        "id": "sg:person.0722663416.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722663416.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Division of Endocrinology and Metabolism, Department of Medicine, Thyroid Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Sun Wook", 
        "id": "sg:person.01344770710.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344770710.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Division of Endocrinology and Metabolism, Department of Medicine, Thyroid Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chung", 
        "givenName": "Jae Hoon", 
        "id": "sg:person.01276655510.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276655510.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1210/jc.2014-3647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000641209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/jc.2014-3647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000641209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2265.1998.00584.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006749887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0096088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007122101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/thy.2015.0020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007626247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/jc.2015-3290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007762651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/jc.2015-3960", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013995421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1067/msy.2000.109728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019417562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000442047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021125235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1097-0142(197701)39:1<215::aid-cncr2820390134>3.0.co;2-#", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027283095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ijc.10332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029396616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.29025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034812227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/jc.2015-4290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038891597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/591285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042246354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/thy.2014.0460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043266943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/jc.2016-2666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044396896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/jc.2016-2666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044396896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/jpem.2004.17.3.339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045249400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1530/eje-13-0524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046101981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2967/jnumed.113.130450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050454764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1542/peds.2013-3926", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052092710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10654-012-9710-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052896731", 
          "https://doi.org/10.1007/s10654-012-9710-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/thy.2010.0178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059320835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/thy.2011.0232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059321211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/thy.2016.0302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059322281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/er.2011-0011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064286005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/jc.2007-1154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064290076"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-10", 
    "datePublishedReg": "2017-10-01", 
    "description": "PURPOSE: There has been increasing interest in a risk-adopted management strategy known as dynamic risk stratification following the revised American Thyroid Association guidelines for differentiated thyroid cancer. We aimed to evaluate the usefulness of dynamic risk stratification for predicting structural disease in pediatric differentiated thyroid cancer patients.\nMETHODS: We retrospectively reviewed 130 pediatric differentiated thyroid cancer patients (\u226419 years) who were treated between 1996 and 2015 at Samsung Medical Center. Patients were stratified according to three American Thyroid Association initial risk group (low, intermediate, or high risk) and four dynamic risk stratification group (excellent, indeterminate, biochemical incomplete, or structural incomplete).\nRESULTS: Based on dynamic risk stratification strategy, structural disease was identified 3.9% in the excellent group, 9.7% in the indeterminate group, 76.9% in the biochemical incomplete group, and 100% in the structural incomplete group. The hazard ratios of the structural disease were 18.10 (P\u2009<\u20090.001) in the biochemical incomplete group, and 19.583 (P\u2009<\u20090.001) in the structural incomplete group compared to the excellent group. The prevalence of structural disease also increased as American Thyroid Association initial risk classification increased (5.9% in the low-risk group, 13.6% in the intermediate-risk group, and 45% in the high-risk group). The hazard ratios of structural disease in the high-risk group was 10.296 (P\u2009<\u20090.001) in compared to the low-risk group.\nCONCLUSION: Dynamic risk stratification based on patient responses to initial therapy was able to effectively predict the risk of structural disease in a pediatric population, and as a follow-up strategy, may work as well in pediatric differentiated thyroid cancer patients as it does in adult differentiated thyroid cancer patients.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s12020-017-1381-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1112251", 
        "issn": [
          "1355-008X", 
          "1559-0100"
        ], 
        "name": "Endocrine", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "58"
      }
    ], 
    "name": "Validation of dynamic risk stratification in pediatric differentiated thyroid cancer", 
    "pagination": "167-175", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cb1a6b5c93c05bb018c73038381023404eaa85fe87b4c40cd4e1992aa508061d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28822062"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9434444"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s12020-017-1381-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091242586"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s12020-017-1381-7", 
      "https://app.dimensions.ai/details/publication/pub.1091242586"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113655_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs12020-017-1381-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12020-017-1381-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12020-017-1381-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12020-017-1381-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12020-017-1381-7'


 

This table displays all metadata directly associated to this object as RDF triples.

258 TRIPLES      21 PREDICATES      71 URIs      38 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s12020-017-1381-7 schema:about N0f30af1c41154e64afea7f3254cabac3
2 N25e530b185574d23bce1d738875e351d
3 N2bf665ddeed24cecb2b7b6e55c93d3b2
4 N36b474d7011445578cee8c079606efd1
5 N54b100effd804f5c8c6c488c3015cb33
6 N8b11ae4f646449d39971dba355b1d97c
7 N91f702a798f9438e9fa4f89b434080cc
8 N989262a5a5ae400fbd670faafdfb3824
9 Na1a1c72d4f2a4499b9d1db77e60f0df6
10 Na52fb2c6cef9423aab58519a93d799c1
11 Nafddf26e6af7484eb26ab21cf69f41ff
12 Nb0f34d768c684d0e981b71accdfb0612
13 Nb87b3d30a027494c82d415747afe85cd
14 Nc3e4018dc7c54b83bf0f4c6860947ee6
15 Nd2fd788ef4454a708dd63dd61e8c33b9
16 Nd4f79b6051d94c9d9f41c3bd724818e7
17 Ne3d8812fd7704a198c2c7b82b087bca3
18 anzsrc-for:11
19 anzsrc-for:1112
20 schema:author N9a3c2875060842f1b1d6e84a9ab04a2e
21 schema:citation sg:pub.10.1007/s10654-012-9710-x
22 https://doi.org/10.1002/1097-0142(197701)39:1<215::aid-cncr2820390134>3.0.co;2-#
23 https://doi.org/10.1002/cncr.29025
24 https://doi.org/10.1002/ijc.10332
25 https://doi.org/10.1046/j.1365-2265.1998.00584.x
26 https://doi.org/10.1067/msy.2000.109728
27 https://doi.org/10.1089/thy.2010.0178
28 https://doi.org/10.1089/thy.2011.0232
29 https://doi.org/10.1089/thy.2014.0460
30 https://doi.org/10.1089/thy.2015.0020
31 https://doi.org/10.1089/thy.2016.0302
32 https://doi.org/10.1155/2014/591285
33 https://doi.org/10.1159/000442047
34 https://doi.org/10.1210/er.2011-0011
35 https://doi.org/10.1210/jc.2007-1154
36 https://doi.org/10.1210/jc.2014-3647
37 https://doi.org/10.1210/jc.2015-3290
38 https://doi.org/10.1210/jc.2015-3960
39 https://doi.org/10.1210/jc.2015-4290
40 https://doi.org/10.1210/jc.2016-2666
41 https://doi.org/10.1371/journal.pone.0096088
42 https://doi.org/10.1515/jpem.2004.17.3.339
43 https://doi.org/10.1530/eje-13-0524
44 https://doi.org/10.1542/peds.2013-3926
45 https://doi.org/10.2967/jnumed.113.130450
46 schema:datePublished 2017-10
47 schema:datePublishedReg 2017-10-01
48 schema:description PURPOSE: There has been increasing interest in a risk-adopted management strategy known as dynamic risk stratification following the revised American Thyroid Association guidelines for differentiated thyroid cancer. We aimed to evaluate the usefulness of dynamic risk stratification for predicting structural disease in pediatric differentiated thyroid cancer patients. METHODS: We retrospectively reviewed 130 pediatric differentiated thyroid cancer patients (≤19 years) who were treated between 1996 and 2015 at Samsung Medical Center. Patients were stratified according to three American Thyroid Association initial risk group (low, intermediate, or high risk) and four dynamic risk stratification group (excellent, indeterminate, biochemical incomplete, or structural incomplete). RESULTS: Based on dynamic risk stratification strategy, structural disease was identified 3.9% in the excellent group, 9.7% in the indeterminate group, 76.9% in the biochemical incomplete group, and 100% in the structural incomplete group. The hazard ratios of the structural disease were 18.10 (P < 0.001) in the biochemical incomplete group, and 19.583 (P < 0.001) in the structural incomplete group compared to the excellent group. The prevalence of structural disease also increased as American Thyroid Association initial risk classification increased (5.9% in the low-risk group, 13.6% in the intermediate-risk group, and 45% in the high-risk group). The hazard ratios of structural disease in the high-risk group was 10.296 (P < 0.001) in compared to the low-risk group. CONCLUSION: Dynamic risk stratification based on patient responses to initial therapy was able to effectively predict the risk of structural disease in a pediatric population, and as a follow-up strategy, may work as well in pediatric differentiated thyroid cancer patients as it does in adult differentiated thyroid cancer patients.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree false
52 schema:isPartOf N853c686e0f5a4dcc9957e21f6d7785b5
53 N966ec9b9b63541e6a0ceb7dd8d2268fa
54 sg:journal.1112251
55 schema:name Validation of dynamic risk stratification in pediatric differentiated thyroid cancer
56 schema:pagination 167-175
57 schema:productId N02438b8b980144aebe50ca99640687b8
58 N0ca74a1cb6924e96a71292f4e5a27769
59 N3ad1aff723354ae6a0e49b13c014e4cb
60 N48b7eed4f7cd49858f8814d170576cff
61 Nf442e3de3a3c4037aca6dca6b2dea894
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091242586
63 https://doi.org/10.1007/s12020-017-1381-7
64 schema:sdDatePublished 2019-04-11T10:32
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N728e846c4e0e4ea99d7338067d42e0c1
67 schema:url https://link.springer.com/10.1007%2Fs12020-017-1381-7
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N02438b8b980144aebe50ca99640687b8 schema:name nlm_unique_id
72 schema:value 9434444
73 rdf:type schema:PropertyValue
74 N0ca74a1cb6924e96a71292f4e5a27769 schema:name readcube_id
75 schema:value cb1a6b5c93c05bb018c73038381023404eaa85fe87b4c40cd4e1992aa508061d
76 rdf:type schema:PropertyValue
77 N0f30af1c41154e64afea7f3254cabac3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Disease-Free Survival
79 rdf:type schema:DefinedTerm
80 N1da9bbaaa0ba405ebe27e9f1d6975e55 schema:name Division of Endocrinology and Metabolism, Department of Medicine, Thyroid Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
81 rdf:type schema:Organization
82 N232d06a7234c4987a31ab24838c1dd9b rdf:first sg:person.01276655510.52
83 rdf:rest rdf:nil
84 N25e530b185574d23bce1d738875e351d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Risk Assessment
86 rdf:type schema:DefinedTerm
87 N2bf665ddeed24cecb2b7b6e55c93d3b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Retrospective Studies
89 rdf:type schema:DefinedTerm
90 N36b474d7011445578cee8c079606efd1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Treatment Outcome
92 rdf:type schema:DefinedTerm
93 N3ad1aff723354ae6a0e49b13c014e4cb schema:name doi
94 schema:value 10.1007/s12020-017-1381-7
95 rdf:type schema:PropertyValue
96 N48b7eed4f7cd49858f8814d170576cff schema:name pubmed_id
97 schema:value 28822062
98 rdf:type schema:PropertyValue
99 N54b100effd804f5c8c6c488c3015cb33 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Neoplasm Metastasis
101 rdf:type schema:DefinedTerm
102 N728e846c4e0e4ea99d7338067d42e0c1 schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 N7aacc6809df64b498547a7f6901475ea rdf:first sg:person.01344770710.12
105 rdf:rest N232d06a7234c4987a31ab24838c1dd9b
106 N853c686e0f5a4dcc9957e21f6d7785b5 schema:volumeNumber 58
107 rdf:type schema:PublicationVolume
108 N88b8eb34c8c142c6b23941ff43bd41cf schema:name Division of Endocrinology and Metabolism, Department of Medicine, Thyroid Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
109 rdf:type schema:Organization
110 N8b11ae4f646449d39971dba355b1d97c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Predictive Value of Tests
112 rdf:type schema:DefinedTerm
113 N8be901c161c14e87b6186cb951e4cd60 schema:name Division of Endocrinology and Metabolism, Department of Medicine, Thyroid Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
114 rdf:type schema:Organization
115 N91f702a798f9438e9fa4f89b434080cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Proportional Hazards Models
117 rdf:type schema:DefinedTerm
118 N966ec9b9b63541e6a0ceb7dd8d2268fa schema:issueNumber 1
119 rdf:type schema:PublicationIssue
120 N989262a5a5ae400fbd670faafdfb3824 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Thyroid Neoplasms
122 rdf:type schema:DefinedTerm
123 N9a3c2875060842f1b1d6e84a9ab04a2e rdf:first sg:person.0733730706.32
124 rdf:rest Nc1508ab241e74a998596a902ee4088e7
125 Na1a1c72d4f2a4499b9d1db77e60f0df6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Thyroidectomy
127 rdf:type schema:DefinedTerm
128 Na52fb2c6cef9423aab58519a93d799c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Iodine Radioisotopes
130 rdf:type schema:DefinedTerm
131 Nafddf26e6af7484eb26ab21cf69f41ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Male
133 rdf:type schema:DefinedTerm
134 Nb0f34d768c684d0e981b71accdfb0612 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Combined Modality Therapy
136 rdf:type schema:DefinedTerm
137 Nb3859cad634145aaa0a83a07131e030e rdf:first sg:person.011410557201.29
138 rdf:rest Nf8d6d3193e894d4b9ce1f0e4581b33b6
139 Nb87b3d30a027494c82d415747afe85cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Child
141 rdf:type schema:DefinedTerm
142 Nbdeb816ed15a4e7bb1e01c5bd44769dc schema:name Division of Endocrinology and Metabolism, Department of Medicine, Thyroid Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
143 rdf:type schema:Organization
144 Nc1508ab241e74a998596a902ee4088e7 rdf:first sg:person.01361372134.73
145 rdf:rest Nb3859cad634145aaa0a83a07131e030e
146 Nc3e4018dc7c54b83bf0f4c6860947ee6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Female
148 rdf:type schema:DefinedTerm
149 Nd2fd788ef4454a708dd63dd61e8c33b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Adolescent
151 rdf:type schema:DefinedTerm
152 Nd4f79b6051d94c9d9f41c3bd724818e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Young Adult
154 rdf:type schema:DefinedTerm
155 Ne3bb78c458c649db988847ebe3438325 schema:name Division of Endocrinology and Metabolism, Department of Medicine, Thyroid Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
156 rdf:type schema:Organization
157 Ne3d8812fd7704a198c2c7b82b087bca3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Humans
159 rdf:type schema:DefinedTerm
160 Nf442e3de3a3c4037aca6dca6b2dea894 schema:name dimensions_id
161 schema:value pub.1091242586
162 rdf:type schema:PropertyValue
163 Nf8d6d3193e894d4b9ce1f0e4581b33b6 rdf:first sg:person.0722663416.94
164 rdf:rest N7aacc6809df64b498547a7f6901475ea
165 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
166 schema:name Medical and Health Sciences
167 rdf:type schema:DefinedTerm
168 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
169 schema:name Oncology and Carcinogenesis
170 rdf:type schema:DefinedTerm
171 sg:journal.1112251 schema:issn 1355-008X
172 1559-0100
173 schema:name Endocrine
174 rdf:type schema:Periodical
175 sg:person.011410557201.29 schema:affiliation Ne3bb78c458c649db988847ebe3438325
176 schema:familyName Kim
177 schema:givenName Hye In
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011410557201.29
179 rdf:type schema:Person
180 sg:person.01276655510.52 schema:affiliation N1da9bbaaa0ba405ebe27e9f1d6975e55
181 schema:familyName Chung
182 schema:givenName Jae Hoon
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276655510.52
184 rdf:type schema:Person
185 sg:person.01344770710.12 schema:affiliation N88b8eb34c8c142c6b23941ff43bd41cf
186 schema:familyName Kim
187 schema:givenName Sun Wook
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344770710.12
189 rdf:type schema:Person
190 sg:person.01361372134.73 schema:affiliation Nbdeb816ed15a4e7bb1e01c5bd44769dc
191 schema:familyName Kim
192 schema:givenName Young Nam
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361372134.73
194 rdf:type schema:Person
195 sg:person.0722663416.94 schema:affiliation N8be901c161c14e87b6186cb951e4cd60
196 schema:familyName Kim
197 schema:givenName Tae Hyuk
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722663416.94
199 rdf:type schema:Person
200 sg:person.0733730706.32 schema:affiliation https://www.grid.ac/institutes/grid.416355.0
201 schema:familyName Sohn
202 schema:givenName Seo Young
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733730706.32
204 rdf:type schema:Person
205 sg:pub.10.1007/s10654-012-9710-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052896731
206 https://doi.org/10.1007/s10654-012-9710-x
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1002/1097-0142(197701)39:1<215::aid-cncr2820390134>3.0.co;2-# schema:sameAs https://app.dimensions.ai/details/publication/pub.1027283095
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1002/cncr.29025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034812227
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1002/ijc.10332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029396616
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1046/j.1365-2265.1998.00584.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006749887
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1067/msy.2000.109728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019417562
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1089/thy.2010.0178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059320835
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1089/thy.2011.0232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059321211
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1089/thy.2014.0460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043266943
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1089/thy.2015.0020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007626247
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1089/thy.2016.0302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059322281
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1155/2014/591285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042246354
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1159/000442047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021125235
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1210/er.2011-0011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064286005
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1210/jc.2007-1154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064290076
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1210/jc.2014-3647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000641209
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1210/jc.2015-3290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007762651
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1210/jc.2015-3960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013995421
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1210/jc.2015-4290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038891597
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1210/jc.2016-2666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044396896
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1371/journal.pone.0096088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007122101
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1515/jpem.2004.17.3.339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045249400
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1530/eje-13-0524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046101981
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1542/peds.2013-3926 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052092710
253 rdf:type schema:CreativeWork
254 https://doi.org/10.2967/jnumed.113.130450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050454764
255 rdf:type schema:CreativeWork
256 https://www.grid.ac/institutes/grid.416355.0 schema:alternateName Myongji Hospital
257 schema:name Department of Endocrinology and Metabolism, Seonam University, Myongji Hospital, Goyang, Korea
258 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...