Redesign of (R)-Omega-Transaminase and Its Application for Synthesizing Amino Acids with Bulky Side Chain View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-08-04

AUTHORS

Dong-Xu Jia, Chen Peng, Jun-Liang Li, Fan Wang, Zhi-Qiang Liu, Yu-Guo Zheng

ABSTRACT

ω-Transaminase (ω-TA) is an attractive biocatalyst for stereospecific preparation of amino acids and derivatives, but low catalytic efficiency and unfavorable substrate specificity hamper their industrial application. In this work, to obtain applicable (R)-ω-TA responsible for amination of α-keto acids substrates, the reactivities of eight previously synthesized ω-TAs toward pyruvate using (R)-α-methylbenzylamine ((R)-α-MBA) as amine donor were investigated, and Gibberella zeae TA (GzTA) with the highest (R)-TA activity and stereoselectivity was selected as starting scaffold for engineering. Site-directed mutagenesis around enzymatic active pocket and access tunnel identified three positive mutation sites, S214A, F113L, and V60A. Kinetic analysis synchronously with molecular docking revealed that these mutations afforded desirable alleviation of steric hindrance for pyruvate and α-MBA. Furthermore, the constructed single-, double-, and triple-mutant exhibited varying degrees of improved specificities toward bulkier α-keto acids. Using 2-oxo-2-phenylacetic acid (1d) as substrate, the conversion rate of triple-mutant F113L/V60A/S214A increased by 3.8-fold relative to that of wide-type GzTA. This study provided a practical engineering strategy for improving catalytic efficiency and substrate specificity of (R)-ω-TA. The obtained experience shed light on creating more industrial ω-TAs mutants that can accommodate structurally diverse substrates.Graphical abstract More... »

PAGES

3624-3640

References to SciGraph publications

  • 2016-07-18. Identification of (S)-selective transaminases for the asymmetric synthesis of bulky chiral amines in NATURE CHEMISTRY
  • 2014-10-01. Characterization of (R)-selective amine transaminases identified by in silico motif sequence blast in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2020-01-27. Structural insight into the substrate specificity of PLP fold type IV transaminases in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2013-04-11. Active site model of (R)-selective ω-transaminase and its application to the production of d-amino acids in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2017-05-17. Identification, expression and characterization of an R-ω-transaminase from Capronia semiimmersa in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2003-04-10. Purification, characterization, and molecular cloning of a novel amine:pyruvate transaminase from Vibrio fluvialis JS17 in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2005-07-08. Microbial synthesis of chiral amines by (R)-specific transamination with Arthrobacter sp. KNK168 in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2007-09-12. An amine: hydroxyacetone aminotransferase from Moraxella lacunata WZ34 for alaninol synthesis in BIOPROCESS AND BIOSYSTEMS ENGINEERING
  • 2011-10-16. A novel transaminase, (R)-amine:pyruvate aminotransferase, from Arthrobacter sp. KNK168 (FERM BP-5228): purification, characterization, and gene cloning in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2016-06-28. Site-directed mutagenesis of α-l-rhamnosidase from Alternaria sp. L1 to enhance synthesis yield of reverse hydrolysis based on rational design in APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • 2010-09-26. Rational assignment of key motifs for function guides in silico enzyme identification in NATURE CHEMICAL BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s12010-021-03616-7

    DOI

    http://dx.doi.org/10.1007/s12010-021-03616-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1140184747

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/34347249


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, 310014, Hangzhou, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.469325.f", 
              "name": [
                "The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, 310014, Hangzhou, People\u2019s Republic of China", 
                "Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, 310014, Hangzhou, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jia", 
            "givenName": "Dong-Xu", 
            "id": "sg:person.01335722620.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335722620.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, 310014, Hangzhou, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.469325.f", 
              "name": [
                "The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, 310014, Hangzhou, People\u2019s Republic of China", 
                "Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, 310014, Hangzhou, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Peng", 
            "givenName": "Chen", 
            "id": "sg:person.07421146171.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07421146171.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hangzhou Zhongmei Huadong Pharmaceutical Co., Ltd., 866 Moganshan Road, 310005, Hangzhou, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Hangzhou Zhongmei Huadong Pharmaceutical Co., Ltd., 866 Moganshan Road, 310005, Hangzhou, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Jun-Liang", 
            "id": "sg:person.014121537323.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014121537323.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, 310014, Hangzhou, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.469325.f", 
              "name": [
                "The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, 310014, Hangzhou, People\u2019s Republic of China", 
                "Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, 310014, Hangzhou, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Fan", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, 310014, Hangzhou, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.469325.f", 
              "name": [
                "The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, 310014, Hangzhou, People\u2019s Republic of China", 
                "Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, 310014, Hangzhou, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Zhi-Qiang", 
            "id": "sg:person.01256734541.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256734541.85"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, 310014, Hangzhou, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.469325.f", 
              "name": [
                "The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, 310014, Hangzhou, People\u2019s Republic of China", 
                "Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, 310014, Hangzhou, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zheng", 
            "givenName": "Yu-Guo", 
            "id": "sg:person.01144225405.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144225405.06"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nchem.2578", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031451914", 
              "https://doi.org/10.1038/nchem.2578"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-005-0002-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045008497", 
              "https://doi.org/10.1007/s00253-005-0002-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-013-4846-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028708105", 
              "https://doi.org/10.1007/s00253-013-4846-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-014-6056-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008595418", 
              "https://doi.org/10.1007/s00253-014-6056-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchembio.447", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033552261", 
              "https://doi.org/10.1038/nchembio.447"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-003-1250-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048010870", 
              "https://doi.org/10.1007/s00253-003-1250-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-016-7676-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007824959", 
              "https://doi.org/10.1007/s00253-016-7676-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00449-007-0158-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019172016", 
              "https://doi.org/10.1007/s00449-007-0158-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-020-10369-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124345571", 
              "https://doi.org/10.1007/s00253-020-10369-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-011-3580-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037380155", 
              "https://doi.org/10.1007/s00253-011-3580-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00253-017-8309-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085424377", 
              "https://doi.org/10.1007/s00253-017-8309-2"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-08-04", 
        "datePublishedReg": "2021-08-04", 
        "description": "Abstract\u03c9-Transaminase (\u03c9-TA) is an attractive biocatalyst for stereospecific preparation of amino acids and derivatives, but low catalytic efficiency and unfavorable substrate specificity hamper their industrial application. In this work, to obtain applicable (R)-\u03c9-TA responsible for amination of \u03b1-keto acids substrates, the reactivities of eight previously synthesized \u03c9-TAs toward pyruvate using (R)-\u03b1-methylbenzylamine ((R)-\u03b1-MBA) as amine donor were investigated, and Gibberella zeae TA (GzTA) with the highest (R)-TA activity and stereoselectivity was selected as starting scaffold for engineering. Site-directed mutagenesis around enzymatic active pocket and access tunnel identified three positive mutation sites, S214A, F113L, and V60A. Kinetic analysis synchronously with molecular docking revealed that these mutations afforded desirable alleviation of steric hindrance for pyruvate and \u03b1-MBA. Furthermore, the constructed single-, double-, and triple-mutant exhibited varying degrees of improved specificities toward bulkier \u03b1-keto acids. Using 2-oxo-2-phenylacetic acid (1d) as substrate, the conversion rate of triple-mutant F113L/V60A/S214A increased by 3.8-fold relative to that of wide-type GzTA. This study provided a practical engineering strategy for improving catalytic efficiency and substrate specificity of (R)-\u03c9-TA. The obtained experience shed light on creating more industrial \u03c9-TAs mutants that can accommodate structurally diverse substrates.Graphical abstract", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s12010-021-03616-7", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8198962", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1086169", 
            "issn": [
              "0273-2289", 
              "1559-0291"
            ], 
            "name": "Applied Biochemistry and Biotechnology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "193"
          }
        ], 
        "keywords": [
          "practical engineering strategy", 
          "catalytic efficiency", 
          "engineering strategies", 
          "low catalytic efficiency", 
          "attractive biocatalysts", 
          "substrate specificity", 
          "industrial applications", 
          "substrate", 
          "improved specificity", 
          "diverse substrates", 
          "efficiency", 
          "applications", 
          "biocatalyst", 
          "pyruvate", 
          "keto acids", 
          "amino acids", 
          "engineering", 
          "specificity", 
          "conversion rate", 
          "acid substrates", 
          "steric hindrance", 
          "acid", 
          "amine donor", 
          "mutation sites", 
          "preparation", 
          "keto acid substrates", 
          "light", 
          "Ta", 
          "site-directed mutagenesis", 
          "kinetic analysis", 
          "work", 
          "amination", 
          "bulky side chains", 
          "mutagenesis", 
          "hindrance", 
          "strategies", 
          "MBA", 
          "access tunnel", 
          "activity", 
          "rate", 
          "donors", 
          "reactivity", 
          "chain", 
          "redesign", 
          "methylbenzylamine", 
          "analysis", 
          "side chains", 
          "sites", 
          "derivatives", 
          "degree", 
          "active pocket", 
          "tunnel", 
          "molecular docking", 
          "mutants", 
          "study", 
          "mutations", 
          "stereoselectivity", 
          "docking", 
          "pocket", 
          "alleviation", 
          "TA activity", 
          "experience", 
          "Abstract\u03c9-Transaminase", 
          "stereospecific preparation", 
          "unfavorable substrate specificity", 
          "Gibberella zeae TA", 
          "zeae TA", 
          "enzymatic active pocket", 
          "positive mutation sites", 
          "S214A", 
          "F113L", 
          "V60A.", 
          "desirable alleviation", 
          "bulkier \u03b1", 
          "triple-mutant F113L/V60A/S214A", 
          "F113L/V60A/S214A", 
          "V60A/S214A", 
          "wide-type GzTA", 
          "GzTA", 
          "TAs mutants", 
          "Graphical abstract Redesign", 
          "abstract Redesign", 
          "Omega-Transaminase"
        ], 
        "name": "Redesign of (R)-Omega-Transaminase and Its Application for Synthesizing Amino Acids with Bulky Side Chain", 
        "pagination": "3624-3640", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1140184747"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s12010-021-03616-7"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "34347249"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s12010-021-03616-7", 
          "https://app.dimensions.ai/details/publication/pub.1140184747"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:58", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_890.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s12010-021-03616-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s12010-021-03616-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s12010-021-03616-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s12010-021-03616-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s12010-021-03616-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    229 TRIPLES      22 PREDICATES      120 URIs      101 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s12010-021-03616-7 schema:about anzsrc-for:06
    2 anzsrc-for:0601
    3 schema:author Nabd23894f7464976a52049e5083f3305
    4 schema:citation sg:pub.10.1007/s00253-003-1250-6
    5 sg:pub.10.1007/s00253-005-0002-1
    6 sg:pub.10.1007/s00253-011-3580-0
    7 sg:pub.10.1007/s00253-013-4846-5
    8 sg:pub.10.1007/s00253-014-6056-1
    9 sg:pub.10.1007/s00253-016-7676-4
    10 sg:pub.10.1007/s00253-017-8309-2
    11 sg:pub.10.1007/s00253-020-10369-6
    12 sg:pub.10.1007/s00449-007-0158-4
    13 sg:pub.10.1038/nchem.2578
    14 sg:pub.10.1038/nchembio.447
    15 schema:datePublished 2021-08-04
    16 schema:datePublishedReg 2021-08-04
    17 schema:description Abstractω-Transaminase (ω-TA) is an attractive biocatalyst for stereospecific preparation of amino acids and derivatives, but low catalytic efficiency and unfavorable substrate specificity hamper their industrial application. In this work, to obtain applicable (R)-ω-TA responsible for amination of α-keto acids substrates, the reactivities of eight previously synthesized ω-TAs toward pyruvate using (R)-α-methylbenzylamine ((R)-α-MBA) as amine donor were investigated, and Gibberella zeae TA (GzTA) with the highest (R)-TA activity and stereoselectivity was selected as starting scaffold for engineering. Site-directed mutagenesis around enzymatic active pocket and access tunnel identified three positive mutation sites, S214A, F113L, and V60A. Kinetic analysis synchronously with molecular docking revealed that these mutations afforded desirable alleviation of steric hindrance for pyruvate and α-MBA. Furthermore, the constructed single-, double-, and triple-mutant exhibited varying degrees of improved specificities toward bulkier α-keto acids. Using 2-oxo-2-phenylacetic acid (1d) as substrate, the conversion rate of triple-mutant F113L/V60A/S214A increased by 3.8-fold relative to that of wide-type GzTA. This study provided a practical engineering strategy for improving catalytic efficiency and substrate specificity of (R)-ω-TA. The obtained experience shed light on creating more industrial ω-TAs mutants that can accommodate structurally diverse substrates.Graphical abstract
    18 schema:genre article
    19 schema:inLanguage en
    20 schema:isAccessibleForFree false
    21 schema:isPartOf N56a2d365010246bdabd720c716ac32ca
    22 Nf007acc8bc9f44febf4a8780f56f84b8
    23 sg:journal.1086169
    24 schema:keywords Abstractω-Transaminase
    25 F113L
    26 F113L/V60A/S214A
    27 Gibberella zeae TA
    28 Graphical abstract Redesign
    29 GzTA
    30 MBA
    31 Omega-Transaminase
    32 S214A
    33 TA activity
    34 TAs mutants
    35 Ta
    36 V60A.
    37 V60A/S214A
    38 abstract Redesign
    39 access tunnel
    40 acid
    41 acid substrates
    42 active pocket
    43 activity
    44 alleviation
    45 amination
    46 amine donor
    47 amino acids
    48 analysis
    49 applications
    50 attractive biocatalysts
    51 biocatalyst
    52 bulkier α
    53 bulky side chains
    54 catalytic efficiency
    55 chain
    56 conversion rate
    57 degree
    58 derivatives
    59 desirable alleviation
    60 diverse substrates
    61 docking
    62 donors
    63 efficiency
    64 engineering
    65 engineering strategies
    66 enzymatic active pocket
    67 experience
    68 hindrance
    69 improved specificity
    70 industrial applications
    71 keto acid substrates
    72 keto acids
    73 kinetic analysis
    74 light
    75 low catalytic efficiency
    76 methylbenzylamine
    77 molecular docking
    78 mutagenesis
    79 mutants
    80 mutation sites
    81 mutations
    82 pocket
    83 positive mutation sites
    84 practical engineering strategy
    85 preparation
    86 pyruvate
    87 rate
    88 reactivity
    89 redesign
    90 side chains
    91 site-directed mutagenesis
    92 sites
    93 specificity
    94 stereoselectivity
    95 stereospecific preparation
    96 steric hindrance
    97 strategies
    98 study
    99 substrate
    100 substrate specificity
    101 triple-mutant F113L/V60A/S214A
    102 tunnel
    103 unfavorable substrate specificity
    104 wide-type GzTA
    105 work
    106 zeae TA
    107 schema:name Redesign of (R)-Omega-Transaminase and Its Application for Synthesizing Amino Acids with Bulky Side Chain
    108 schema:pagination 3624-3640
    109 schema:productId N58b4d48b410442198e51fab3459c74fa
    110 N7a2598ff71cc42f58ce443c5c58f8427
    111 Ndf35026c76e648b09084c8fad0413f6d
    112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140184747
    113 https://doi.org/10.1007/s12010-021-03616-7
    114 schema:sdDatePublished 2022-01-01T18:58
    115 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    116 schema:sdPublisher Nd6e72ab062f544ab8c86b1c8e9ff0b69
    117 schema:url https://doi.org/10.1007/s12010-021-03616-7
    118 sgo:license sg:explorer/license/
    119 sgo:sdDataset articles
    120 rdf:type schema:ScholarlyArticle
    121 N07f4888315f148dc9d089bf60e0d72df schema:affiliation grid-institutes:grid.469325.f
    122 schema:familyName Wang
    123 schema:givenName Fan
    124 rdf:type schema:Person
    125 N471f1e82de064fc79635345c238a3f02 rdf:first sg:person.01256734541.85
    126 rdf:rest Ndf50d6e885f841e79725177aaf996317
    127 N4e18082582a24177b68ad4765b4fde3a rdf:first N07f4888315f148dc9d089bf60e0d72df
    128 rdf:rest N471f1e82de064fc79635345c238a3f02
    129 N56a2d365010246bdabd720c716ac32ca schema:issueNumber 11
    130 rdf:type schema:PublicationIssue
    131 N58b4d48b410442198e51fab3459c74fa schema:name pubmed_id
    132 schema:value 34347249
    133 rdf:type schema:PropertyValue
    134 N7a2598ff71cc42f58ce443c5c58f8427 schema:name dimensions_id
    135 schema:value pub.1140184747
    136 rdf:type schema:PropertyValue
    137 Nabd23894f7464976a52049e5083f3305 rdf:first sg:person.01335722620.01
    138 rdf:rest Nb25abd6bf4e14182951e9e4924896be0
    139 Nb25abd6bf4e14182951e9e4924896be0 rdf:first sg:person.07421146171.90
    140 rdf:rest Nc235c01e7917448ca7ad858756cf2c28
    141 Nc235c01e7917448ca7ad858756cf2c28 rdf:first sg:person.014121537323.06
    142 rdf:rest N4e18082582a24177b68ad4765b4fde3a
    143 Nd6e72ab062f544ab8c86b1c8e9ff0b69 schema:name Springer Nature - SN SciGraph project
    144 rdf:type schema:Organization
    145 Ndf35026c76e648b09084c8fad0413f6d schema:name doi
    146 schema:value 10.1007/s12010-021-03616-7
    147 rdf:type schema:PropertyValue
    148 Ndf50d6e885f841e79725177aaf996317 rdf:first sg:person.01144225405.06
    149 rdf:rest rdf:nil
    150 Nf007acc8bc9f44febf4a8780f56f84b8 schema:volumeNumber 193
    151 rdf:type schema:PublicationVolume
    152 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    153 schema:name Biological Sciences
    154 rdf:type schema:DefinedTerm
    155 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    156 schema:name Biochemistry and Cell Biology
    157 rdf:type schema:DefinedTerm
    158 sg:grant.8198962 http://pending.schema.org/fundedItem sg:pub.10.1007/s12010-021-03616-7
    159 rdf:type schema:MonetaryGrant
    160 sg:journal.1086169 schema:issn 0273-2289
    161 1559-0291
    162 schema:name Applied Biochemistry and Biotechnology
    163 schema:publisher Springer Nature
    164 rdf:type schema:Periodical
    165 sg:person.01144225405.06 schema:affiliation grid-institutes:grid.469325.f
    166 schema:familyName Zheng
    167 schema:givenName Yu-Guo
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144225405.06
    169 rdf:type schema:Person
    170 sg:person.01256734541.85 schema:affiliation grid-institutes:grid.469325.f
    171 schema:familyName Liu
    172 schema:givenName Zhi-Qiang
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256734541.85
    174 rdf:type schema:Person
    175 sg:person.01335722620.01 schema:affiliation grid-institutes:grid.469325.f
    176 schema:familyName Jia
    177 schema:givenName Dong-Xu
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335722620.01
    179 rdf:type schema:Person
    180 sg:person.014121537323.06 schema:affiliation grid-institutes:None
    181 schema:familyName Li
    182 schema:givenName Jun-Liang
    183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014121537323.06
    184 rdf:type schema:Person
    185 sg:person.07421146171.90 schema:affiliation grid-institutes:grid.469325.f
    186 schema:familyName Peng
    187 schema:givenName Chen
    188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07421146171.90
    189 rdf:type schema:Person
    190 sg:pub.10.1007/s00253-003-1250-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048010870
    191 https://doi.org/10.1007/s00253-003-1250-6
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/s00253-005-0002-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045008497
    194 https://doi.org/10.1007/s00253-005-0002-1
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/s00253-011-3580-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037380155
    197 https://doi.org/10.1007/s00253-011-3580-0
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/s00253-013-4846-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028708105
    200 https://doi.org/10.1007/s00253-013-4846-5
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/s00253-014-6056-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008595418
    203 https://doi.org/10.1007/s00253-014-6056-1
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/s00253-016-7676-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007824959
    206 https://doi.org/10.1007/s00253-016-7676-4
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/s00253-017-8309-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085424377
    209 https://doi.org/10.1007/s00253-017-8309-2
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/s00253-020-10369-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124345571
    212 https://doi.org/10.1007/s00253-020-10369-6
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/s00449-007-0158-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019172016
    215 https://doi.org/10.1007/s00449-007-0158-4
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/nchem.2578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031451914
    218 https://doi.org/10.1038/nchem.2578
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/nchembio.447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033552261
    221 https://doi.org/10.1038/nchembio.447
    222 rdf:type schema:CreativeWork
    223 grid-institutes:None schema:alternateName Hangzhou Zhongmei Huadong Pharmaceutical Co., Ltd., 866 Moganshan Road, 310005, Hangzhou, People’s Republic of China
    224 schema:name Hangzhou Zhongmei Huadong Pharmaceutical Co., Ltd., 866 Moganshan Road, 310005, Hangzhou, People’s Republic of China
    225 rdf:type schema:Organization
    226 grid-institutes:grid.469325.f schema:alternateName Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, 310014, Hangzhou, People’s Republic of China
    227 schema:name Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, 310014, Hangzhou, People’s Republic of China
    228 The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, 310014, Hangzhou, People’s Republic of China
    229 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...