Super-hydrophobic coating prepared by mechanical milling method View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-10-19

AUTHORS

Haiyang Wang, Miaomiao Liang, Jianjing Gao, Zemin He, Shaopeng Tian, Kexuan Li, Yuzhen Zhao, Zongcheng Miao

ABSTRACT

In mechanical milling, stearic acid can be used as a process control agent to reduce the interface energy between powders and contribute to the crushing of powder particulates. In this study, a super-hydrophobic coating with a contact angle of 153° ± 2° was fabricated by ball milling a copper powder and stearic acid mixture onto an aluminum foil. Fourier-transform infrared spectroscopy demonstrated that stearic acid was successfully transferred to the surface of the copper powder, and scanning electron microscopy revealed that the structure of the super-hydrophobic coating consisted of irregular particles and sheets. The combined effect of low surface free energy and rough structure of the copper-based coating contributed to the super-hydrophobicity. The reported method is beneficial to preparing super-hydrophobic materials by the solid-state synthesis. More... »

PAGES

587-595

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11998-021-00546-1

DOI

http://dx.doi.org/10.1007/s11998-021-00546-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1142007007


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Key Laboratory of Organic Polymer Photoelectric Materials, School of Sciences, Xi\u2019an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, Xijing University, 710123, Xi\u2019an, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.460132.2", 
          "name": [
            "Key Laboratory of Organic Polymer Photoelectric Materials, School of Sciences, Xi\u2019an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, Xijing University, 710123, Xi\u2019an, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Haiyang", 
        "id": "sg:person.013422717673.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013422717673.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, Xi\u2019an Polytechnic University, 710048, Xi\u2019an, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.464495.e", 
          "name": [
            "School of Materials Science and Engineering, Xi\u2019an Polytechnic University, 710048, Xi\u2019an, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liang", 
        "givenName": "Miaomiao", 
        "id": "sg:person.012555011030.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012555011030.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Key Laboratory of Organic Polymer Photoelectric Materials, School of Sciences, Xi\u2019an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, Xijing University, 710123, Xi\u2019an, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.460132.2", 
          "name": [
            "Key Laboratory of Organic Polymer Photoelectric Materials, School of Sciences, Xi\u2019an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, Xijing University, 710123, Xi\u2019an, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "Jianjing", 
        "id": "sg:person.07504460743.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07504460743.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Key Laboratory of Organic Polymer Photoelectric Materials, School of Sciences, Xi\u2019an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, Xijing University, 710123, Xi\u2019an, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.460132.2", 
          "name": [
            "Key Laboratory of Organic Polymer Photoelectric Materials, School of Sciences, Xi\u2019an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, Xijing University, 710123, Xi\u2019an, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "He", 
        "givenName": "Zemin", 
        "id": "sg:person.012760652462.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012760652462.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Key Laboratory of Organic Polymer Photoelectric Materials, School of Sciences, Xi\u2019an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, Xijing University, 710123, Xi\u2019an, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.460132.2", 
          "name": [
            "Key Laboratory of Organic Polymer Photoelectric Materials, School of Sciences, Xi\u2019an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, Xijing University, 710123, Xi\u2019an, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tian", 
        "givenName": "Shaopeng", 
        "id": "sg:person.014572372530.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014572372530.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Key Laboratory of Organic Polymer Photoelectric Materials, School of Sciences, Xi\u2019an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, Xijing University, 710123, Xi\u2019an, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.460132.2", 
          "name": [
            "Key Laboratory of Organic Polymer Photoelectric Materials, School of Sciences, Xi\u2019an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, Xijing University, 710123, Xi\u2019an, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Kexuan", 
        "id": "sg:person.014174333133.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014174333133.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Key Laboratory of Organic Polymer Photoelectric Materials, School of Sciences, Xi\u2019an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, Xijing University, 710123, Xi\u2019an, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.460132.2", 
          "name": [
            "Key Laboratory of Organic Polymer Photoelectric Materials, School of Sciences, Xi\u2019an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, Xijing University, 710123, Xi\u2019an, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Yuzhen", 
        "id": "sg:person.016707271122.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016707271122.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, 710072, Xi\u2019an, Shaanxi, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.440588.5", 
          "name": [
            "Key Laboratory of Organic Polymer Photoelectric Materials, School of Sciences, Xi\u2019an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, Xijing University, 710123, Xi\u2019an, People\u2019s Republic of China", 
            "School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, 710072, Xi\u2019an, Shaanxi, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miao", 
        "givenName": "Zongcheng", 
        "id": "sg:person.011202645440.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011202645440.98"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature19313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020444625", 
          "https://doi.org/10.1038/nature19313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms10308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042180998", 
          "https://doi.org/10.1038/ncomms10308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/432036a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035536645", 
          "https://doi.org/10.1038/432036a"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-10-19", 
    "datePublishedReg": "2021-10-19", 
    "description": "In mechanical milling, stearic acid can be used as a process control agent to reduce the interface energy between powders and contribute to the crushing of powder particulates. In this study, a super-hydrophobic coating with a contact angle of 153\u00b0\u00a0\u00b1\u00a02\u00b0 was fabricated by ball milling a copper powder and stearic acid mixture onto an aluminum foil. Fourier-transform infrared spectroscopy demonstrated that stearic acid was successfully transferred to the surface of the copper powder, and scanning electron microscopy revealed that the structure of the super-hydrophobic coating consisted of irregular particles and sheets. The combined effect of low surface free energy and rough structure of the copper-based coating contributed to the super-hydrophobicity. The reported method is beneficial to preparing super-hydrophobic materials by the\u00a0solid-state synthesis.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11998-021-00546-1", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8158509", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1412839", 
        "issn": [
          "1945-9645", 
          "1742-0261"
        ], 
        "name": "Journal of Coatings Technology and Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "keywords": [
      "super-hydrophobic coating", 
      "super-hydrophobic materials", 
      "low surface free energy", 
      "copper-based coatings", 
      "mechanical milling method", 
      "copper powder", 
      "solid-state synthesis", 
      "surface free energy", 
      "process control agent", 
      "stearic acid mixture", 
      "stearic acid", 
      "milling method", 
      "rough structure", 
      "electron microscopy", 
      "mechanical milling", 
      "contact angle", 
      "powder particulates", 
      "free energy", 
      "coatings", 
      "interface energy", 
      "aluminum foil", 
      "irregular particles", 
      "powder", 
      "acid mixture", 
      "acid", 
      "spectroscopy", 
      "microscopy", 
      "synthesis", 
      "milling", 
      "structure", 
      "energy", 
      "crushing", 
      "mixture", 
      "foil", 
      "combined effect", 
      "surface", 
      "particles", 
      "particulates", 
      "sheets", 
      "materials", 
      "ball", 
      "method", 
      "angle", 
      "agents", 
      "control agents", 
      "effect", 
      "study"
    ], 
    "name": "Super-hydrophobic coating prepared by mechanical milling method", 
    "pagination": "587-595", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1142007007"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11998-021-00546-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11998-021-00546-1", 
      "https://app.dimensions.ai/details/publication/pub.1142007007"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_873.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11998-021-00546-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11998-021-00546-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11998-021-00546-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11998-021-00546-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11998-021-00546-1'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      22 PREDICATES      76 URIs      64 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11998-021-00546-1 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 anzsrc-for:0912
4 schema:author N6405a223953a4120920017bc6e877781
5 schema:citation sg:pub.10.1038/432036a
6 sg:pub.10.1038/nature19313
7 sg:pub.10.1038/ncomms10308
8 schema:datePublished 2021-10-19
9 schema:datePublishedReg 2021-10-19
10 schema:description In mechanical milling, stearic acid can be used as a process control agent to reduce the interface energy between powders and contribute to the crushing of powder particulates. In this study, a super-hydrophobic coating with a contact angle of 153° ± 2° was fabricated by ball milling a copper powder and stearic acid mixture onto an aluminum foil. Fourier-transform infrared spectroscopy demonstrated that stearic acid was successfully transferred to the surface of the copper powder, and scanning electron microscopy revealed that the structure of the super-hydrophobic coating consisted of irregular particles and sheets. The combined effect of low surface free energy and rough structure of the copper-based coating contributed to the super-hydrophobicity. The reported method is beneficial to preparing super-hydrophobic materials by the solid-state synthesis.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N12a1e496d5504bcfb813da1f7349371e
15 Ne64635a339e943869308e0cd456fa125
16 sg:journal.1412839
17 schema:keywords acid
18 acid mixture
19 agents
20 aluminum foil
21 angle
22 ball
23 coatings
24 combined effect
25 contact angle
26 control agents
27 copper powder
28 copper-based coatings
29 crushing
30 effect
31 electron microscopy
32 energy
33 foil
34 free energy
35 interface energy
36 irregular particles
37 low surface free energy
38 materials
39 mechanical milling
40 mechanical milling method
41 method
42 microscopy
43 milling
44 milling method
45 mixture
46 particles
47 particulates
48 powder
49 powder particulates
50 process control agent
51 rough structure
52 sheets
53 solid-state synthesis
54 spectroscopy
55 stearic acid
56 stearic acid mixture
57 structure
58 study
59 super-hydrophobic coating
60 super-hydrophobic materials
61 surface
62 surface free energy
63 synthesis
64 schema:name Super-hydrophobic coating prepared by mechanical milling method
65 schema:pagination 587-595
66 schema:productId N879414f4f27f40e09d612d2cca5ea626
67 N97f787caeb87424f9b734e5a6fa89792
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142007007
69 https://doi.org/10.1007/s11998-021-00546-1
70 schema:sdDatePublished 2022-05-20T07:38
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N70693c26c9324b109b7fe4df463041f1
73 schema:url https://doi.org/10.1007/s11998-021-00546-1
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N10e6098f235b4423915c9143f1dadcb4 rdf:first sg:person.016707271122.24
78 rdf:rest Ne654cd1adfab405198043710c233828e
79 N12a1e496d5504bcfb813da1f7349371e schema:volumeNumber 19
80 rdf:type schema:PublicationVolume
81 N3a4b94afc73446868277feb17441f7ca rdf:first sg:person.014572372530.49
82 rdf:rest Nee72077da21c46d48854f263c9bdce44
83 N3e2f0b062e534a509603660efb8b0f7e rdf:first sg:person.07504460743.14
84 rdf:rest N3f04797685434e758b0adf23ac6de126
85 N3f04797685434e758b0adf23ac6de126 rdf:first sg:person.012760652462.73
86 rdf:rest N3a4b94afc73446868277feb17441f7ca
87 N6405a223953a4120920017bc6e877781 rdf:first sg:person.013422717673.07
88 rdf:rest N9f2e48e085054ae4b7db7b83a88a3415
89 N70693c26c9324b109b7fe4df463041f1 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 N879414f4f27f40e09d612d2cca5ea626 schema:name dimensions_id
92 schema:value pub.1142007007
93 rdf:type schema:PropertyValue
94 N97f787caeb87424f9b734e5a6fa89792 schema:name doi
95 schema:value 10.1007/s11998-021-00546-1
96 rdf:type schema:PropertyValue
97 N9f2e48e085054ae4b7db7b83a88a3415 rdf:first sg:person.012555011030.10
98 rdf:rest N3e2f0b062e534a509603660efb8b0f7e
99 Ne64635a339e943869308e0cd456fa125 schema:issueNumber 2
100 rdf:type schema:PublicationIssue
101 Ne654cd1adfab405198043710c233828e rdf:first sg:person.011202645440.98
102 rdf:rest rdf:nil
103 Nee72077da21c46d48854f263c9bdce44 rdf:first sg:person.014174333133.44
104 rdf:rest N10e6098f235b4423915c9143f1dadcb4
105 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
106 schema:name Engineering
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
109 schema:name Chemical Engineering
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
112 schema:name Materials Engineering
113 rdf:type schema:DefinedTerm
114 sg:grant.8158509 http://pending.schema.org/fundedItem sg:pub.10.1007/s11998-021-00546-1
115 rdf:type schema:MonetaryGrant
116 sg:journal.1412839 schema:issn 1742-0261
117 1945-9645
118 schema:name Journal of Coatings Technology and Research
119 schema:publisher Springer Nature
120 rdf:type schema:Periodical
121 sg:person.011202645440.98 schema:affiliation grid-institutes:grid.440588.5
122 schema:familyName Miao
123 schema:givenName Zongcheng
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011202645440.98
125 rdf:type schema:Person
126 sg:person.012555011030.10 schema:affiliation grid-institutes:grid.464495.e
127 schema:familyName Liang
128 schema:givenName Miaomiao
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012555011030.10
130 rdf:type schema:Person
131 sg:person.012760652462.73 schema:affiliation grid-institutes:grid.460132.2
132 schema:familyName He
133 schema:givenName Zemin
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012760652462.73
135 rdf:type schema:Person
136 sg:person.013422717673.07 schema:affiliation grid-institutes:grid.460132.2
137 schema:familyName Wang
138 schema:givenName Haiyang
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013422717673.07
140 rdf:type schema:Person
141 sg:person.014174333133.44 schema:affiliation grid-institutes:grid.460132.2
142 schema:familyName Li
143 schema:givenName Kexuan
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014174333133.44
145 rdf:type schema:Person
146 sg:person.014572372530.49 schema:affiliation grid-institutes:grid.460132.2
147 schema:familyName Tian
148 schema:givenName Shaopeng
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014572372530.49
150 rdf:type schema:Person
151 sg:person.016707271122.24 schema:affiliation grid-institutes:grid.460132.2
152 schema:familyName Zhao
153 schema:givenName Yuzhen
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016707271122.24
155 rdf:type schema:Person
156 sg:person.07504460743.14 schema:affiliation grid-institutes:grid.460132.2
157 schema:familyName Gao
158 schema:givenName Jianjing
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07504460743.14
160 rdf:type schema:Person
161 sg:pub.10.1038/432036a schema:sameAs https://app.dimensions.ai/details/publication/pub.1035536645
162 https://doi.org/10.1038/432036a
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/nature19313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020444625
165 https://doi.org/10.1038/nature19313
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/ncomms10308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042180998
168 https://doi.org/10.1038/ncomms10308
169 rdf:type schema:CreativeWork
170 grid-institutes:grid.440588.5 schema:alternateName School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, 710072, Xi’an, Shaanxi, People’s Republic of China
171 schema:name Key Laboratory of Organic Polymer Photoelectric Materials, School of Sciences, Xi’an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, Xijing University, 710123, Xi’an, People’s Republic of China
172 School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, 710072, Xi’an, Shaanxi, People’s Republic of China
173 rdf:type schema:Organization
174 grid-institutes:grid.460132.2 schema:alternateName Key Laboratory of Organic Polymer Photoelectric Materials, School of Sciences, Xi’an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, Xijing University, 710123, Xi’an, People’s Republic of China
175 schema:name Key Laboratory of Organic Polymer Photoelectric Materials, School of Sciences, Xi’an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, Xijing University, 710123, Xi’an, People’s Republic of China
176 rdf:type schema:Organization
177 grid-institutes:grid.464495.e schema:alternateName School of Materials Science and Engineering, Xi’an Polytechnic University, 710048, Xi’an, People’s Republic of China
178 schema:name School of Materials Science and Engineering, Xi’an Polytechnic University, 710048, Xi’an, People’s Republic of China
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...