Detection of different chemical binders in coatings using hyperspectral imaging View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-11-03

AUTHORS

Bahman Raeissi, Muhammad Ahsan Bashir, Joseph L. Garrett, Milica Orlandic, Tor Arne Johansen, Torbjørn Skramstad

ABSTRACT

Organic coatings protect metallic structures of significant commercial value. Regular inspections of coatings are required to ensure their integrity and, therefore, to verify their stated performance. However, for metallic structures located in harsh places, coating inspection can pose significant safety and logistical challenges. Near-infrared (NIR) spectroscopy is a rapid, nondestructive and relatively inexpensive analytical technique. It is currently employed to analyze different chemicals in fields like agriculture, food, and pharmaceuticals. Similarly, hyperspectral imaging (HSI) creates a spatial map of spectral information by measuring light reflected from a material. In this work, hyperspectral imaging in the NIR portion of the electromagnetic spectrum (NIR-HSI) is used to accurately distinguish between the chemically different binders employed in commercial organic coatings. In addition, k-means clustering is explored as a tool to provide diagnostic information about the spatial inhomogeneities in the chemical structure of an applied coating, which, if undetected, can lead to coating defects during service life. The results of this work suggest that the NIR-HSI could be used for remote inspections of organic coatings. More... »

PAGES

559-574

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11998-021-00544-3

DOI

http://dx.doi.org/10.1007/s11998-021-00544-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1142365799


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "DNV AS, Veritasveien 1, 1363, H\u00f8vik, Norway", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "DNV AS, Veritasveien 1, 1363, H\u00f8vik, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Raeissi", 
        "givenName": "Bahman", 
        "id": "sg:person.011030265741.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011030265741.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jotun AS, Hystadveien 167, 3209, Sandefjord, Norway", 
          "id": "http://www.grid.ac/institutes/grid.458161.f", 
          "name": [
            "Jotun AS, Hystadveien 167, 3209, Sandefjord, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bashir", 
        "givenName": "Muhammad Ahsan", 
        "id": "sg:person.010011743653.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010011743653.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Norwegian University of Science and Technology, 7491, Trondheim, Norway", 
          "id": "http://www.grid.ac/institutes/grid.5947.f", 
          "name": [
            "Norwegian University of Science and Technology, 7491, Trondheim, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garrett", 
        "givenName": "Joseph L.", 
        "id": "sg:person.010731065226.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010731065226.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Norwegian University of Science and Technology, 7491, Trondheim, Norway", 
          "id": "http://www.grid.ac/institutes/grid.5947.f", 
          "name": [
            "Norwegian University of Science and Technology, 7491, Trondheim, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Orlandic", 
        "givenName": "Milica", 
        "id": "sg:person.010154213177.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010154213177.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Norwegian University of Science and Technology, 7491, Trondheim, Norway", 
          "id": "http://www.grid.ac/institutes/grid.5947.f", 
          "name": [
            "Norwegian University of Science and Technology, 7491, Trondheim, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Johansen", 
        "givenName": "Tor Arne", 
        "id": "sg:person.012510415254.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012510415254.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Norwegian University of Science and Technology, 7491, Trondheim, Norway", 
          "id": "http://www.grid.ac/institutes/grid.5947.f", 
          "name": [
            "Norwegian University of Science and Technology, 7491, Trondheim, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Skramstad", 
        "givenName": "Torbj\u00f8rn", 
        "id": "sg:person.015715673401.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015715673401.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11164-016-2795-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017544000", 
          "https://doi.org/10.1007/s11164-016-2795-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-981-15-8648-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1132629883", 
          "https://doi.org/10.1007/978-981-15-8648-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11998-010-9267-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014312406", 
          "https://doi.org/10.1007/s11998-010-9267-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11998-013-9565-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006926585", 
          "https://doi.org/10.1007/s11998-013-9565-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-11-03", 
    "datePublishedReg": "2021-11-03", 
    "description": "Organic coatings protect metallic structures of significant commercial value. Regular inspections of coatings are required to ensure their integrity and, therefore, to verify their stated performance. However, for metallic structures located in harsh places, coating inspection can pose significant safety and logistical challenges. Near-infrared (NIR) spectroscopy is a rapid, nondestructive and relatively inexpensive analytical technique. It is currently employed to analyze different chemicals in fields like agriculture, food, and pharmaceuticals. Similarly, hyperspectral imaging (HSI) creates a spatial map of spectral information by measuring light reflected from a material. In this work, hyperspectral imaging in the NIR portion of the electromagnetic spectrum (NIR-HSI) is used to accurately distinguish between the chemically different binders employed in commercial organic coatings. In addition, k-means clustering is explored as a tool to provide diagnostic information about the spatial inhomogeneities in the chemical structure of an applied coating, which, if undetected, can lead to coating defects during service life. The results of this work suggest that the NIR-HSI could be used for remote inspections of organic coatings.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11998-021-00544-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4642272", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7571767", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1412839", 
        "issn": [
          "1945-9645", 
          "1742-0261"
        ], 
        "name": "Journal of Coatings Technology and Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "keywords": [
      "organic coatings", 
      "commercial organic coatings", 
      "inexpensive analytical techniques", 
      "metallic structures", 
      "chemical structure", 
      "analytical techniques", 
      "applied coating", 
      "service life", 
      "coatings", 
      "different chemical", 
      "remote inspection", 
      "chemical binders", 
      "different binders", 
      "hyperspectral imaging", 
      "significant commercial value", 
      "regular inspection", 
      "NIR portion", 
      "binder", 
      "structure", 
      "spectroscopy", 
      "spatial inhomogeneity", 
      "electromagnetic spectrum", 
      "spectral information", 
      "pharmaceuticals", 
      "inspection", 
      "harsh places", 
      "significant safety", 
      "chemicals", 
      "NIR-HSI", 
      "spectra", 
      "commercial value", 
      "materials", 
      "spatial maps", 
      "inhomogeneity", 
      "work", 
      "performance", 
      "detection", 
      "field", 
      "light", 
      "k-means clustering", 
      "technique", 
      "defects", 
      "addition", 
      "imaging", 
      "results", 
      "integrity", 
      "values", 
      "maps", 
      "safety", 
      "logistical challenges", 
      "tool", 
      "challenges", 
      "food", 
      "information", 
      "diagnostic information", 
      "portion", 
      "place", 
      "life", 
      "agriculture", 
      "clustering"
    ], 
    "name": "Detection of different chemical binders in coatings using hyperspectral imaging", 
    "pagination": "559-574", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1142365799"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11998-021-00544-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11998-021-00544-3", 
      "https://app.dimensions.ai/details/publication/pub.1142365799"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_899.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11998-021-00544-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11998-021-00544-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11998-021-00544-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11998-021-00544-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11998-021-00544-3'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      22 PREDICATES      89 URIs      77 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11998-021-00544-3 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N264d6a16aa2744bd87901a4eb336eec8
4 schema:citation sg:pub.10.1007/978-981-15-8648-4
5 sg:pub.10.1007/s11164-016-2795-1
6 sg:pub.10.1007/s11998-010-9267-0
7 sg:pub.10.1007/s11998-013-9565-4
8 schema:datePublished 2021-11-03
9 schema:datePublishedReg 2021-11-03
10 schema:description Organic coatings protect metallic structures of significant commercial value. Regular inspections of coatings are required to ensure their integrity and, therefore, to verify their stated performance. However, for metallic structures located in harsh places, coating inspection can pose significant safety and logistical challenges. Near-infrared (NIR) spectroscopy is a rapid, nondestructive and relatively inexpensive analytical technique. It is currently employed to analyze different chemicals in fields like agriculture, food, and pharmaceuticals. Similarly, hyperspectral imaging (HSI) creates a spatial map of spectral information by measuring light reflected from a material. In this work, hyperspectral imaging in the NIR portion of the electromagnetic spectrum (NIR-HSI) is used to accurately distinguish between the chemically different binders employed in commercial organic coatings. In addition, k-means clustering is explored as a tool to provide diagnostic information about the spatial inhomogeneities in the chemical structure of an applied coating, which, if undetected, can lead to coating defects during service life. The results of this work suggest that the NIR-HSI could be used for remote inspections of organic coatings.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree true
14 schema:isPartOf N0850758700fe4ee689f143f64d5182e3
15 N8dc9674bf19b4278b88b4cd3a1c7d66d
16 sg:journal.1412839
17 schema:keywords NIR portion
18 NIR-HSI
19 addition
20 agriculture
21 analytical techniques
22 applied coating
23 binder
24 challenges
25 chemical binders
26 chemical structure
27 chemicals
28 clustering
29 coatings
30 commercial organic coatings
31 commercial value
32 defects
33 detection
34 diagnostic information
35 different binders
36 different chemical
37 electromagnetic spectrum
38 field
39 food
40 harsh places
41 hyperspectral imaging
42 imaging
43 inexpensive analytical techniques
44 information
45 inhomogeneity
46 inspection
47 integrity
48 k-means clustering
49 life
50 light
51 logistical challenges
52 maps
53 materials
54 metallic structures
55 organic coatings
56 performance
57 pharmaceuticals
58 place
59 portion
60 regular inspection
61 remote inspection
62 results
63 safety
64 service life
65 significant commercial value
66 significant safety
67 spatial inhomogeneity
68 spatial maps
69 spectra
70 spectral information
71 spectroscopy
72 structure
73 technique
74 tool
75 values
76 work
77 schema:name Detection of different chemical binders in coatings using hyperspectral imaging
78 schema:pagination 559-574
79 schema:productId N17260e0d7cb446629a43aab90f352a5d
80 N8d6d3b5d9a544f1ab4790a9f7333ee58
81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142365799
82 https://doi.org/10.1007/s11998-021-00544-3
83 schema:sdDatePublished 2022-05-20T07:39
84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
85 schema:sdPublisher N236ebd76b72d4a129453782b522ad043
86 schema:url https://doi.org/10.1007/s11998-021-00544-3
87 sgo:license sg:explorer/license/
88 sgo:sdDataset articles
89 rdf:type schema:ScholarlyArticle
90 N0850758700fe4ee689f143f64d5182e3 schema:issueNumber 2
91 rdf:type schema:PublicationIssue
92 N0e8949e3606740b2babc2298b7c96d01 rdf:first sg:person.010011743653.36
93 rdf:rest N31b9e5d1965c455b98e1ac3ac567698c
94 N17260e0d7cb446629a43aab90f352a5d schema:name doi
95 schema:value 10.1007/s11998-021-00544-3
96 rdf:type schema:PropertyValue
97 N1e42d50359d441a39c6f6e5cfcd022eb rdf:first sg:person.015715673401.13
98 rdf:rest rdf:nil
99 N236ebd76b72d4a129453782b522ad043 schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 N264d6a16aa2744bd87901a4eb336eec8 rdf:first sg:person.011030265741.84
102 rdf:rest N0e8949e3606740b2babc2298b7c96d01
103 N31b9e5d1965c455b98e1ac3ac567698c rdf:first sg:person.010731065226.77
104 rdf:rest N6623edcc9e2c4c70be74a11e9fe9b5b1
105 N43eb9df37acc421ca9c9be55c1b471bd rdf:first sg:person.012510415254.00
106 rdf:rest N1e42d50359d441a39c6f6e5cfcd022eb
107 N6623edcc9e2c4c70be74a11e9fe9b5b1 rdf:first sg:person.010154213177.36
108 rdf:rest N43eb9df37acc421ca9c9be55c1b471bd
109 N8d6d3b5d9a544f1ab4790a9f7333ee58 schema:name dimensions_id
110 schema:value pub.1142365799
111 rdf:type schema:PropertyValue
112 N8dc9674bf19b4278b88b4cd3a1c7d66d schema:volumeNumber 19
113 rdf:type schema:PublicationVolume
114 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
115 schema:name Engineering
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
118 schema:name Materials Engineering
119 rdf:type schema:DefinedTerm
120 sg:grant.4642272 http://pending.schema.org/fundedItem sg:pub.10.1007/s11998-021-00544-3
121 rdf:type schema:MonetaryGrant
122 sg:grant.7571767 http://pending.schema.org/fundedItem sg:pub.10.1007/s11998-021-00544-3
123 rdf:type schema:MonetaryGrant
124 sg:journal.1412839 schema:issn 1742-0261
125 1945-9645
126 schema:name Journal of Coatings Technology and Research
127 schema:publisher Springer Nature
128 rdf:type schema:Periodical
129 sg:person.010011743653.36 schema:affiliation grid-institutes:grid.458161.f
130 schema:familyName Bashir
131 schema:givenName Muhammad Ahsan
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010011743653.36
133 rdf:type schema:Person
134 sg:person.010154213177.36 schema:affiliation grid-institutes:grid.5947.f
135 schema:familyName Orlandic
136 schema:givenName Milica
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010154213177.36
138 rdf:type schema:Person
139 sg:person.010731065226.77 schema:affiliation grid-institutes:grid.5947.f
140 schema:familyName Garrett
141 schema:givenName Joseph L.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010731065226.77
143 rdf:type schema:Person
144 sg:person.011030265741.84 schema:affiliation grid-institutes:None
145 schema:familyName Raeissi
146 schema:givenName Bahman
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011030265741.84
148 rdf:type schema:Person
149 sg:person.012510415254.00 schema:affiliation grid-institutes:grid.5947.f
150 schema:familyName Johansen
151 schema:givenName Tor Arne
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012510415254.00
153 rdf:type schema:Person
154 sg:person.015715673401.13 schema:affiliation grid-institutes:grid.5947.f
155 schema:familyName Skramstad
156 schema:givenName Torbjørn
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015715673401.13
158 rdf:type schema:Person
159 sg:pub.10.1007/978-981-15-8648-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132629883
160 https://doi.org/10.1007/978-981-15-8648-4
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s11164-016-2795-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017544000
163 https://doi.org/10.1007/s11164-016-2795-1
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s11998-010-9267-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014312406
166 https://doi.org/10.1007/s11998-010-9267-0
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s11998-013-9565-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006926585
169 https://doi.org/10.1007/s11998-013-9565-4
170 rdf:type schema:CreativeWork
171 grid-institutes:None schema:alternateName DNV AS, Veritasveien 1, 1363, Høvik, Norway
172 schema:name DNV AS, Veritasveien 1, 1363, Høvik, Norway
173 rdf:type schema:Organization
174 grid-institutes:grid.458161.f schema:alternateName Jotun AS, Hystadveien 167, 3209, Sandefjord, Norway
175 schema:name Jotun AS, Hystadveien 167, 3209, Sandefjord, Norway
176 rdf:type schema:Organization
177 grid-institutes:grid.5947.f schema:alternateName Norwegian University of Science and Technology, 7491, Trondheim, Norway
178 schema:name Norwegian University of Science and Technology, 7491, Trondheim, Norway
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...