Ultra-repellency of Al surfaces: design and evaluation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-01-16

AUTHORS

Y. Zhu, Y. M. Hu, L. Ma, H.-Y. Nie, W. M. Lau

ABSTRACT

Aluminum (Al) surfaces with ultra-repellency as well as desirable robustness were designed and fabricated. With photolithographic patterning of a thick SU-8 layer and sputtering of a thin Al film, re-entrant micro-pillar textured Al surfaces were prepared. After derivatization with perfluoroalkyl phosphoric acid (FPA), the textured Al surfaces showed ultra-repellency for a wide variety of liquids. The contact angles (CAs) of deionized (DI) water, hexadecane and dodecane were larger than 150°, and those of methanol and ethanol were larger than 100°. The sliding angles (SAs) of DI water, hexadecane and dodecane were 5°, 10°, and 10°, respectively, showing excellent superamphiphobicity. The SAs of methanol and ethanol were in the range of 20°–30°. The robustness of the ultra-repellent Al surface was evaluated by three parameters: robust height (H*), robust angle (T*) and robust factor (A*). For the DI water probing, the values of the parameters are H* ≈ 403, T* ≈ 119 and A* ≈ 92, respectively, indicative of a desirable robustness. We clarified that only re-entrant structures can support composite liquid–solid–vapor interfaces when the corresponding Young’s CAs are smaller than 90°, and the function of the nanometer structures of the hierarchical textures which were widely adopted to fabricate superamphiphobic surfaces is to help construct re-entrant structures. FPA derivatization is effective in lowering the surface energy of Al surfaces, combining with re-entrant textures to provide a simple and high throughput approach to ultra-repellency for a wide variety of liquids. More... »

PAGES

633-641

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11998-017-0012-9

DOI

http://dx.doi.org/10.1007/s11998-017-0012-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100424891


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kunming University of Science and Technology, 650093, Kunming, China", 
          "id": "http://www.grid.ac/institutes/grid.218292.2", 
          "name": [
            "Kunming University of Science and Technology, 650093, Kunming, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Y.", 
        "id": "sg:person.07774025227.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07774025227.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Engineering, Dali University, 671003, Dali, China", 
          "id": "http://www.grid.ac/institutes/grid.440682.c", 
          "name": [
            "College of Engineering, Dali University, 671003, Dali, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Y. M.", 
        "id": "sg:person.016107471535.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016107471535.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Surface Science Western, The University of Western Ontario, 999 Collip Circle, N6G 0J3, London, ON, Canada", 
          "id": "http://www.grid.ac/institutes/grid.39381.30", 
          "name": [
            "Surface Science Western, The University of Western Ontario, 999 Collip Circle, N6G 0J3, London, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "L.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Surface Science Western, The University of Western Ontario, 999 Collip Circle, N6G 0J3, London, ON, Canada", 
          "id": "http://www.grid.ac/institutes/grid.39381.30", 
          "name": [
            "Surface Science Western, The University of Western Ontario, 999 Collip Circle, N6G 0J3, London, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nie", 
        "givenName": "H.-Y.", 
        "id": "sg:person.01224317254.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224317254.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, 100083, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.69775.3a", 
          "name": [
            "Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, 100083, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lau", 
        "givenName": "W. M.", 
        "id": "sg:person.0654233576.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654233576.68"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11998-015-9729-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051372796", 
          "https://doi.org/10.1007/s11998-015-9729-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-013-7872-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037918279", 
          "https://doi.org/10.1007/s10853-013-7872-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11998-012-9431-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049538372", 
          "https://doi.org/10.1007/s11998-012-9431-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00339-010-6131-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031300160", 
          "https://doi.org/10.1007/s00339-010-6131-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-011-5546-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007250965", 
          "https://doi.org/10.1007/s10853-011-5546-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-01-16", 
    "datePublishedReg": "2018-01-16", 
    "description": "Aluminum (Al) surfaces with ultra-repellency as well as desirable robustness were designed and fabricated. With photolithographic patterning of a thick SU-8 layer and sputtering of a thin Al film, re-entrant micro-pillar textured Al surfaces were prepared. After derivatization with perfluoroalkyl phosphoric acid (FPA), the textured Al surfaces showed ultra-repellency for a wide variety of liquids. The contact angles (CAs) of deionized (DI) water, hexadecane and dodecane were larger than 150\u00b0, and those of methanol and ethanol were larger than 100\u00b0. The sliding angles (SAs) of DI water, hexadecane and dodecane were 5\u00b0, 10\u00b0, and 10\u00b0, respectively, showing excellent superamphiphobicity. The SAs of methanol and ethanol were in the range of 20\u00b0\u201330\u00b0. The robustness of the ultra-repellent Al surface was evaluated by three parameters: robust height (H*), robust angle (T*) and robust factor (A*). For the DI water probing, the values of the parameters are H*\u00a0\u2248\u00a0403, T*\u00a0\u2248\u00a0119 and A*\u00a0\u2248\u00a092, respectively, indicative of a desirable robustness. We clarified that only re-entrant structures can support composite liquid\u2013solid\u2013vapor interfaces when the corresponding Young\u2019s CAs are smaller than 90\u00b0, and the function of the nanometer structures of the hierarchical textures which were widely adopted to fabricate superamphiphobic surfaces is to help construct re-entrant structures. FPA derivatization is effective in lowering the surface energy of Al surfaces, combining with re-entrant textures to provide a simple and high throughput approach to ultra-repellency for a wide variety of liquids.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11998-017-0012-9", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8123788", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8132063", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1430781", 
        "issn": [
          "1547-0091", 
          "1935-3804"
        ], 
        "name": "Journal of Coatings Technology and Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "keywords": [
      "re-entrant structure", 
      "Al surface", 
      "DI water", 
      "thick SU-8 layer", 
      "SU-8 layer", 
      "re-entrant texture", 
      "thin Al films", 
      "desirable robustness", 
      "excellent superamphiphobicity", 
      "robust height", 
      "superamphiphobic surfaces", 
      "Al films", 
      "hierarchical textures", 
      "surface energy", 
      "photolithographic patterning", 
      "nanometer structures", 
      "vapor interface", 
      "surface", 
      "phosphoric acid", 
      "robust angle", 
      "robustness", 
      "superamphiphobicity", 
      "liquid", 
      "water", 
      "dodecane", 
      "sputtering", 
      "high-throughput approach", 
      "hexadecane", 
      "angle", 
      "films", 
      "aluminum", 
      "texture", 
      "parameters", 
      "structure", 
      "layer", 
      "throughput approach", 
      "interface", 
      "wide variety", 
      "methanol", 
      "energy", 
      "design", 
      "ethanol", 
      "height", 
      "younger ca", 
      "contact", 
      "range", 
      "derivatization", 
      "patterning", 
      "robust factor", 
      "Ca", 
      "values", 
      "approach", 
      "SA", 
      "variety", 
      "evaluation", 
      "acid", 
      "function", 
      "factors"
    ], 
    "name": "Ultra-repellency of Al surfaces: design and evaluation", 
    "pagination": "633-641", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100424891"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11998-017-0012-9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11998-017-0012-9", 
      "https://app.dimensions.ai/details/publication/pub.1100424891"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_779.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11998-017-0012-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11998-017-0012-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11998-017-0012-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11998-017-0012-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11998-017-0012-9'


 

This table displays all metadata directly associated to this object as RDF triples.

175 TRIPLES      21 PREDICATES      87 URIs      74 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11998-017-0012-9 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nadb16f6bccc64913a4047be44d3cdfc5
4 schema:citation sg:pub.10.1007/s00339-010-6131-0
5 sg:pub.10.1007/s10853-011-5546-0
6 sg:pub.10.1007/s10853-013-7872-x
7 sg:pub.10.1007/s11998-012-9431-9
8 sg:pub.10.1007/s11998-015-9729-5
9 schema:datePublished 2018-01-16
10 schema:datePublishedReg 2018-01-16
11 schema:description Aluminum (Al) surfaces with ultra-repellency as well as desirable robustness were designed and fabricated. With photolithographic patterning of a thick SU-8 layer and sputtering of a thin Al film, re-entrant micro-pillar textured Al surfaces were prepared. After derivatization with perfluoroalkyl phosphoric acid (FPA), the textured Al surfaces showed ultra-repellency for a wide variety of liquids. The contact angles (CAs) of deionized (DI) water, hexadecane and dodecane were larger than 150°, and those of methanol and ethanol were larger than 100°. The sliding angles (SAs) of DI water, hexadecane and dodecane were 5°, 10°, and 10°, respectively, showing excellent superamphiphobicity. The SAs of methanol and ethanol were in the range of 20°–30°. The robustness of the ultra-repellent Al surface was evaluated by three parameters: robust height (H*), robust angle (T*) and robust factor (A*). For the DI water probing, the values of the parameters are H* ≈ 403, T* ≈ 119 and A* ≈ 92, respectively, indicative of a desirable robustness. We clarified that only re-entrant structures can support composite liquid–solid–vapor interfaces when the corresponding Young’s CAs are smaller than 90°, and the function of the nanometer structures of the hierarchical textures which were widely adopted to fabricate superamphiphobic surfaces is to help construct re-entrant structures. FPA derivatization is effective in lowering the surface energy of Al surfaces, combining with re-entrant textures to provide a simple and high throughput approach to ultra-repellency for a wide variety of liquids.
12 schema:genre article
13 schema:isAccessibleForFree false
14 schema:isPartOf N29c3379569044fa7841f49391f99ac38
15 N82f8e4c0c9cb4ee3b5d9adf45984358e
16 sg:journal.1430781
17 schema:keywords Al films
18 Al surface
19 Ca
20 DI water
21 SA
22 SU-8 layer
23 acid
24 aluminum
25 angle
26 approach
27 contact
28 derivatization
29 design
30 desirable robustness
31 dodecane
32 energy
33 ethanol
34 evaluation
35 excellent superamphiphobicity
36 factors
37 films
38 function
39 height
40 hexadecane
41 hierarchical textures
42 high-throughput approach
43 interface
44 layer
45 liquid
46 methanol
47 nanometer structures
48 parameters
49 patterning
50 phosphoric acid
51 photolithographic patterning
52 range
53 re-entrant structure
54 re-entrant texture
55 robust angle
56 robust factor
57 robust height
58 robustness
59 sputtering
60 structure
61 superamphiphobic surfaces
62 superamphiphobicity
63 surface
64 surface energy
65 texture
66 thick SU-8 layer
67 thin Al films
68 throughput approach
69 values
70 vapor interface
71 variety
72 water
73 wide variety
74 younger ca
75 schema:name Ultra-repellency of Al surfaces: design and evaluation
76 schema:pagination 633-641
77 schema:productId Nf4c028598777488b849d4600650b4128
78 Nfe023f0ed19a4387a1fa11729b0c2e8e
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100424891
80 https://doi.org/10.1007/s11998-017-0012-9
81 schema:sdDatePublished 2022-09-02T16:03
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher N3222cd3a310a433188e0d7bb70f58676
84 schema:url https://doi.org/10.1007/s11998-017-0012-9
85 sgo:license sg:explorer/license/
86 sgo:sdDataset articles
87 rdf:type schema:ScholarlyArticle
88 N29c3379569044fa7841f49391f99ac38 schema:volumeNumber 15
89 rdf:type schema:PublicationVolume
90 N3222cd3a310a433188e0d7bb70f58676 schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 N446f33575ce34e15a09f400f6db0d947 schema:affiliation grid-institutes:grid.39381.30
93 schema:familyName Ma
94 schema:givenName L.
95 rdf:type schema:Person
96 N82f8e4c0c9cb4ee3b5d9adf45984358e schema:issueNumber 3
97 rdf:type schema:PublicationIssue
98 N8ab1ff70e3304b2494534b443757ce75 rdf:first sg:person.016107471535.31
99 rdf:rest Naa208361b2044a3f8f6a08b8043ee8af
100 Na0f3265dd4e64fcb94a801522eaa04ef rdf:first sg:person.0654233576.68
101 rdf:rest rdf:nil
102 Naa208361b2044a3f8f6a08b8043ee8af rdf:first N446f33575ce34e15a09f400f6db0d947
103 rdf:rest Nddd81a5eae7d4269a687162c602c618e
104 Nadb16f6bccc64913a4047be44d3cdfc5 rdf:first sg:person.07774025227.42
105 rdf:rest N8ab1ff70e3304b2494534b443757ce75
106 Nddd81a5eae7d4269a687162c602c618e rdf:first sg:person.01224317254.17
107 rdf:rest Na0f3265dd4e64fcb94a801522eaa04ef
108 Nf4c028598777488b849d4600650b4128 schema:name doi
109 schema:value 10.1007/s11998-017-0012-9
110 rdf:type schema:PropertyValue
111 Nfe023f0ed19a4387a1fa11729b0c2e8e schema:name dimensions_id
112 schema:value pub.1100424891
113 rdf:type schema:PropertyValue
114 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
115 schema:name Engineering
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
118 schema:name Materials Engineering
119 rdf:type schema:DefinedTerm
120 sg:grant.8123788 http://pending.schema.org/fundedItem sg:pub.10.1007/s11998-017-0012-9
121 rdf:type schema:MonetaryGrant
122 sg:grant.8132063 http://pending.schema.org/fundedItem sg:pub.10.1007/s11998-017-0012-9
123 rdf:type schema:MonetaryGrant
124 sg:journal.1430781 schema:issn 1547-0091
125 1935-3804
126 schema:name Journal of Coatings Technology and Research
127 schema:publisher Springer Nature
128 rdf:type schema:Periodical
129 sg:person.01224317254.17 schema:affiliation grid-institutes:grid.39381.30
130 schema:familyName Nie
131 schema:givenName H.-Y.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224317254.17
133 rdf:type schema:Person
134 sg:person.016107471535.31 schema:affiliation grid-institutes:grid.440682.c
135 schema:familyName Hu
136 schema:givenName Y. M.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016107471535.31
138 rdf:type schema:Person
139 sg:person.0654233576.68 schema:affiliation grid-institutes:grid.69775.3a
140 schema:familyName Lau
141 schema:givenName W. M.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654233576.68
143 rdf:type schema:Person
144 sg:person.07774025227.42 schema:affiliation grid-institutes:grid.218292.2
145 schema:familyName Zhu
146 schema:givenName Y.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07774025227.42
148 rdf:type schema:Person
149 sg:pub.10.1007/s00339-010-6131-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031300160
150 https://doi.org/10.1007/s00339-010-6131-0
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s10853-011-5546-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007250965
153 https://doi.org/10.1007/s10853-011-5546-0
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s10853-013-7872-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037918279
156 https://doi.org/10.1007/s10853-013-7872-x
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/s11998-012-9431-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049538372
159 https://doi.org/10.1007/s11998-012-9431-9
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/s11998-015-9729-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051372796
162 https://doi.org/10.1007/s11998-015-9729-5
163 rdf:type schema:CreativeWork
164 grid-institutes:grid.218292.2 schema:alternateName Kunming University of Science and Technology, 650093, Kunming, China
165 schema:name Kunming University of Science and Technology, 650093, Kunming, China
166 rdf:type schema:Organization
167 grid-institutes:grid.39381.30 schema:alternateName Surface Science Western, The University of Western Ontario, 999 Collip Circle, N6G 0J3, London, ON, Canada
168 schema:name Surface Science Western, The University of Western Ontario, 999 Collip Circle, N6G 0J3, London, ON, Canada
169 rdf:type schema:Organization
170 grid-institutes:grid.440682.c schema:alternateName College of Engineering, Dali University, 671003, Dali, China
171 schema:name College of Engineering, Dali University, 671003, Dali, China
172 rdf:type schema:Organization
173 grid-institutes:grid.69775.3a schema:alternateName Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, 100083, Beijing, China
174 schema:name Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, 100083, Beijing, China
175 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...