Combined LF-NMR and Artificial Intelligence for Continuous Real-Time Monitoring of Carrot in Microwave Vacuum Drying View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Qing Sun, Min Zhang, Arun S. Mujumdar, Peiqiang Yang

ABSTRACT

In this paper, intelligent technology of combined low field NMR (LF-NMR) and back propagation artificial neural network (BP-ANN) was used to monitor moisture content in carrot during microwave vacuum drying. The relationship between different drying powers (200, 300, and 400 W) and NMR signals (A21, A22, A23, and Atotal) was investigated. Results show that as the drying time elapsed, the NMR signals of Atotal and A23 decrease all drying conditions, A21 and A22 tend to increase at high moisture content and then decrease, which is consistent with the state of water while changes during drying. NMR signals can be used as indicators for online monitoring of moisture and control of the drying process. With NMR signals as input variables, a BP-ANN model was built optimized by transfer function, training function, and the number of neurons to model the moisture content (output). Compared with a linear regression model and multiple linear regression model, the BP-ANN model with the topology of 4-25-1, transfer function of tansig and purelin, and training function of trainlm outperformed the fitting performance and accuracy. This shows that the combined approach of utilizing LF-NMR and BP-ANN has great potential in intelligent online monitoring and control applications for carrot drying. More... »

PAGES

551-562

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11947-018-2231-1

DOI

http://dx.doi.org/10.1007/s11947-018-2231-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111310794


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jiangnan University", 
          "id": "https://www.grid.ac/institutes/grid.258151.a", 
          "name": [
            "State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu Province, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Qing", 
        "id": "sg:person.015153255174.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015153255174.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jiangnan University", 
          "id": "https://www.grid.ac/institutes/grid.258151.a", 
          "name": [
            "State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu Province, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Min", 
        "id": "sg:person.015240150061.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015240150061.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "McGill University", 
          "id": "https://www.grid.ac/institutes/grid.14709.3b", 
          "name": [
            "Department of Bioresource Engineering, Macdonald Campus, McGill University, H9X 3V9, Ste. Anne de Bellevue, Quebec, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mujumdar", 
        "givenName": "Arun S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Suzhou Niumang Analytical Instrument Corporation, 215000, Suzhou, Jiangsu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Peiqiang", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.foodchem.2015.03.125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001488773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tifs.2006.04.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002001987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ifset.2016.06.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006727101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpba.2016.08.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007573917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10408398.2014.979280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010151206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodres.2014.06.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011642029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fbp.2014.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017412894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07373937.2016.1231201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020566894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07373937.2016.1193512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021338254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfoodeng.2013.06.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026371568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10408398.2015.1074158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029191687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/425341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035974146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07373937.2015.1012267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039015268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.microc.2016.06.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039197836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/tee.22250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039763072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2621.2012.03007.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043725958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jsfa.8288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083862761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodres.2017.03.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084075220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compag.2017.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084745843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07373937.2017.1300807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085481405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07373937.2017.1323336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085952052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07373937.2017.1357569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090972299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11947-017-1991-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091942930", 
          "https://doi.org/10.1007/s11947-017-1991-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jsfa.8801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093062593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodchem.2018.01.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100200716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07373937.2017.1418751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100560147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compag.2018.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100830741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07373937.2018.1432643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101002538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10408398.2018.1446900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101292228"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "In this paper, intelligent technology of combined low field NMR (LF-NMR) and back propagation artificial neural network (BP-ANN) was used to monitor moisture content in carrot during microwave vacuum drying. The relationship between different drying powers (200, 300, and 400 W) and NMR signals (A21, A22, A23, and Atotal) was investigated. Results show that as the drying time elapsed, the NMR signals of Atotal and A23 decrease all drying conditions, A21 and A22 tend to increase at high moisture content and then decrease, which is consistent with the state of water while changes during drying. NMR signals can be used as indicators for online monitoring of moisture and control of the drying process. With NMR signals as input variables, a BP-ANN model was built optimized by transfer function, training function, and the number of neurons to model the moisture content (output). Compared with a linear regression model and multiple linear regression model, the BP-ANN model with the topology of 4-25-1, transfer function of tansig and purelin, and training function of trainlm outperformed the fitting performance and accuracy. This shows that the combined approach of utilizing LF-NMR and BP-ANN has great potential in intelligent online monitoring and control applications for carrot drying.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11947-018-2231-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1045464", 
        "issn": [
          "1935-5130", 
          "1935-5149"
        ], 
        "name": "Food and Bioprocess Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Combined LF-NMR and Artificial Intelligence for Continuous Real-Time Monitoring of Carrot in Microwave Vacuum Drying", 
    "pagination": "551-562", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "729d288f741090392cc7cde542ccd240cd1df81f427a25b9515878b7c012d67f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11947-018-2231-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111310794"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11947-018-2231-1", 
      "https://app.dimensions.ai/details/publication/pub.1111310794"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68984_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11947-018-2231-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11947-018-2231-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11947-018-2231-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11947-018-2231-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11947-018-2231-1'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11947-018-2231-1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nb4b2a4d4cbcb4c399932b970c5bbc189
4 schema:citation sg:pub.10.1007/s11947-017-1991-3
5 https://doi.org/10.1002/jsfa.8288
6 https://doi.org/10.1002/jsfa.8801
7 https://doi.org/10.1002/tee.22250
8 https://doi.org/10.1016/j.compag.2017.04.001
9 https://doi.org/10.1016/j.compag.2018.01.006
10 https://doi.org/10.1016/j.fbp.2014.03.005
11 https://doi.org/10.1016/j.foodchem.2015.03.125
12 https://doi.org/10.1016/j.foodchem.2018.01.043
13 https://doi.org/10.1016/j.foodres.2014.06.011
14 https://doi.org/10.1016/j.foodres.2017.03.041
15 https://doi.org/10.1016/j.ifset.2016.06.012
16 https://doi.org/10.1016/j.jfoodeng.2013.06.035
17 https://doi.org/10.1016/j.jpba.2016.08.017
18 https://doi.org/10.1016/j.microc.2016.06.013
19 https://doi.org/10.1016/j.tifs.2006.04.011
20 https://doi.org/10.1080/07373937.2015.1012267
21 https://doi.org/10.1080/07373937.2016.1193512
22 https://doi.org/10.1080/07373937.2016.1231201
23 https://doi.org/10.1080/07373937.2017.1300807
24 https://doi.org/10.1080/07373937.2017.1323336
25 https://doi.org/10.1080/07373937.2017.1357569
26 https://doi.org/10.1080/07373937.2017.1418751
27 https://doi.org/10.1080/07373937.2018.1432643
28 https://doi.org/10.1080/10408398.2014.979280
29 https://doi.org/10.1080/10408398.2015.1074158
30 https://doi.org/10.1080/10408398.2018.1446900
31 https://doi.org/10.1111/j.1365-2621.2012.03007.x
32 https://doi.org/10.1155/2014/425341
33 schema:datePublished 2019-04
34 schema:datePublishedReg 2019-04-01
35 schema:description In this paper, intelligent technology of combined low field NMR (LF-NMR) and back propagation artificial neural network (BP-ANN) was used to monitor moisture content in carrot during microwave vacuum drying. The relationship between different drying powers (200, 300, and 400 W) and NMR signals (A21, A22, A23, and Atotal) was investigated. Results show that as the drying time elapsed, the NMR signals of Atotal and A23 decrease all drying conditions, A21 and A22 tend to increase at high moisture content and then decrease, which is consistent with the state of water while changes during drying. NMR signals can be used as indicators for online monitoring of moisture and control of the drying process. With NMR signals as input variables, a BP-ANN model was built optimized by transfer function, training function, and the number of neurons to model the moisture content (output). Compared with a linear regression model and multiple linear regression model, the BP-ANN model with the topology of 4-25-1, transfer function of tansig and purelin, and training function of trainlm outperformed the fitting performance and accuracy. This shows that the combined approach of utilizing LF-NMR and BP-ANN has great potential in intelligent online monitoring and control applications for carrot drying.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N05ae87b4521242f9b4ecb12bf15ca02a
40 Nf752b6e8f6dc43bf9f36cda35f7e780a
41 sg:journal.1045464
42 schema:name Combined LF-NMR and Artificial Intelligence for Continuous Real-Time Monitoring of Carrot in Microwave Vacuum Drying
43 schema:pagination 551-562
44 schema:productId N19c44b4230d34dd49a9df32c91a8289e
45 Nc370c9fd59d84aa2af9ee8e447ff7625
46 Ne93421c0529f4c24b1ac395800d110eb
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111310794
48 https://doi.org/10.1007/s11947-018-2231-1
49 schema:sdDatePublished 2019-04-11T13:25
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher Nfa3b25ee31b44865b94627573bd672aa
52 schema:url https://link.springer.com/10.1007%2Fs11947-018-2231-1
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N05ae87b4521242f9b4ecb12bf15ca02a schema:volumeNumber 12
57 rdf:type schema:PublicationVolume
58 N0acc892a620e47b99886e2004050e352 rdf:first Nc495530d69cc46f9b055892ff27d7632
59 rdf:rest N31ef27cdc3dd4afa84c55f44297c9e7a
60 N19c44b4230d34dd49a9df32c91a8289e schema:name dimensions_id
61 schema:value pub.1111310794
62 rdf:type schema:PropertyValue
63 N31ef27cdc3dd4afa84c55f44297c9e7a rdf:first Nbc271bbb24164eb9a007e44b680860a1
64 rdf:rest rdf:nil
65 N49ed8952ba554d7bb2882e1e8a0be106 rdf:first sg:person.015240150061.41
66 rdf:rest N0acc892a620e47b99886e2004050e352
67 N72b24afedde14c76a942c25736e0ca71 schema:name Suzhou Niumang Analytical Instrument Corporation, 215000, Suzhou, Jiangsu, China
68 rdf:type schema:Organization
69 Nb4b2a4d4cbcb4c399932b970c5bbc189 rdf:first sg:person.015153255174.80
70 rdf:rest N49ed8952ba554d7bb2882e1e8a0be106
71 Nbc271bbb24164eb9a007e44b680860a1 schema:affiliation N72b24afedde14c76a942c25736e0ca71
72 schema:familyName Yang
73 schema:givenName Peiqiang
74 rdf:type schema:Person
75 Nc370c9fd59d84aa2af9ee8e447ff7625 schema:name doi
76 schema:value 10.1007/s11947-018-2231-1
77 rdf:type schema:PropertyValue
78 Nc495530d69cc46f9b055892ff27d7632 schema:affiliation https://www.grid.ac/institutes/grid.14709.3b
79 schema:familyName Mujumdar
80 schema:givenName Arun S.
81 rdf:type schema:Person
82 Ne93421c0529f4c24b1ac395800d110eb schema:name readcube_id
83 schema:value 729d288f741090392cc7cde542ccd240cd1df81f427a25b9515878b7c012d67f
84 rdf:type schema:PropertyValue
85 Nf752b6e8f6dc43bf9f36cda35f7e780a schema:issueNumber 4
86 rdf:type schema:PublicationIssue
87 Nfa3b25ee31b44865b94627573bd672aa schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
90 schema:name Information and Computing Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
93 schema:name Artificial Intelligence and Image Processing
94 rdf:type schema:DefinedTerm
95 sg:journal.1045464 schema:issn 1935-5130
96 1935-5149
97 schema:name Food and Bioprocess Technology
98 rdf:type schema:Periodical
99 sg:person.015153255174.80 schema:affiliation https://www.grid.ac/institutes/grid.258151.a
100 schema:familyName Sun
101 schema:givenName Qing
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015153255174.80
103 rdf:type schema:Person
104 sg:person.015240150061.41 schema:affiliation https://www.grid.ac/institutes/grid.258151.a
105 schema:familyName Zhang
106 schema:givenName Min
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015240150061.41
108 rdf:type schema:Person
109 sg:pub.10.1007/s11947-017-1991-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091942930
110 https://doi.org/10.1007/s11947-017-1991-3
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1002/jsfa.8288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083862761
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1002/jsfa.8801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093062593
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1002/tee.22250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039763072
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.compag.2017.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084745843
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.compag.2018.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100830741
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.fbp.2014.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017412894
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.foodchem.2015.03.125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001488773
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.foodchem.2018.01.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100200716
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.foodres.2014.06.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011642029
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.foodres.2017.03.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084075220
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.ifset.2016.06.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006727101
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.jfoodeng.2013.06.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026371568
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.jpba.2016.08.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007573917
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.microc.2016.06.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039197836
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.tifs.2006.04.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002001987
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1080/07373937.2015.1012267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039015268
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1080/07373937.2016.1193512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021338254
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1080/07373937.2016.1231201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020566894
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1080/07373937.2017.1300807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085481405
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1080/07373937.2017.1323336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085952052
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1080/07373937.2017.1357569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090972299
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1080/07373937.2017.1418751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100560147
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1080/07373937.2018.1432643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101002538
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1080/10408398.2014.979280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010151206
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1080/10408398.2015.1074158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029191687
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1080/10408398.2018.1446900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101292228
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1111/j.1365-2621.2012.03007.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043725958
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1155/2014/425341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035974146
167 rdf:type schema:CreativeWork
168 https://www.grid.ac/institutes/grid.14709.3b schema:alternateName McGill University
169 schema:name Department of Bioresource Engineering, Macdonald Campus, McGill University, H9X 3V9, Ste. Anne de Bellevue, Quebec, Canada
170 rdf:type schema:Organization
171 https://www.grid.ac/institutes/grid.258151.a schema:alternateName Jiangnan University
172 schema:name State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu Province, China
173 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...