Combined LF-NMR and Artificial Intelligence for Continuous Real-Time Monitoring of Carrot in Microwave Vacuum Drying View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Qing Sun, Min Zhang, Arun S. Mujumdar, Peiqiang Yang

ABSTRACT

In this paper, intelligent technology of combined low field NMR (LF-NMR) and back propagation artificial neural network (BP-ANN) was used to monitor moisture content in carrot during microwave vacuum drying. The relationship between different drying powers (200, 300, and 400 W) and NMR signals (A21, A22, A23, and Atotal) was investigated. Results show that as the drying time elapsed, the NMR signals of Atotal and A23 decrease all drying conditions, A21 and A22 tend to increase at high moisture content and then decrease, which is consistent with the state of water while changes during drying. NMR signals can be used as indicators for online monitoring of moisture and control of the drying process. With NMR signals as input variables, a BP-ANN model was built optimized by transfer function, training function, and the number of neurons to model the moisture content (output). Compared with a linear regression model and multiple linear regression model, the BP-ANN model with the topology of 4-25-1, transfer function of tansig and purelin, and training function of trainlm outperformed the fitting performance and accuracy. This shows that the combined approach of utilizing LF-NMR and BP-ANN has great potential in intelligent online monitoring and control applications for carrot drying. More... »

PAGES

551-562

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11947-018-2231-1

DOI

http://dx.doi.org/10.1007/s11947-018-2231-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111310794


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jiangnan University", 
          "id": "https://www.grid.ac/institutes/grid.258151.a", 
          "name": [
            "State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu Province, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Qing", 
        "id": "sg:person.015153255174.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015153255174.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jiangnan University", 
          "id": "https://www.grid.ac/institutes/grid.258151.a", 
          "name": [
            "State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu Province, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Min", 
        "id": "sg:person.015240150061.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015240150061.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "McGill University", 
          "id": "https://www.grid.ac/institutes/grid.14709.3b", 
          "name": [
            "Department of Bioresource Engineering, Macdonald Campus, McGill University, H9X 3V9, Ste. Anne de Bellevue, Quebec, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mujumdar", 
        "givenName": "Arun S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Suzhou Niumang Analytical Instrument Corporation, 215000, Suzhou, Jiangsu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Peiqiang", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.foodchem.2015.03.125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001488773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tifs.2006.04.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002001987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ifset.2016.06.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006727101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpba.2016.08.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007573917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10408398.2014.979280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010151206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodres.2014.06.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011642029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fbp.2014.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017412894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07373937.2016.1231201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020566894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07373937.2016.1193512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021338254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfoodeng.2013.06.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026371568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10408398.2015.1074158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029191687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/425341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035974146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07373937.2015.1012267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039015268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.microc.2016.06.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039197836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/tee.22250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039763072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2621.2012.03007.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043725958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jsfa.8288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083862761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodres.2017.03.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084075220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compag.2017.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084745843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07373937.2017.1300807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085481405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07373937.2017.1323336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085952052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07373937.2017.1357569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090972299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11947-017-1991-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091942930", 
          "https://doi.org/10.1007/s11947-017-1991-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jsfa.8801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093062593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foodchem.2018.01.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100200716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07373937.2017.1418751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100560147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compag.2018.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100830741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07373937.2018.1432643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101002538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10408398.2018.1446900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101292228"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "In this paper, intelligent technology of combined low field NMR (LF-NMR) and back propagation artificial neural network (BP-ANN) was used to monitor moisture content in carrot during microwave vacuum drying. The relationship between different drying powers (200, 300, and 400 W) and NMR signals (A21, A22, A23, and Atotal) was investigated. Results show that as the drying time elapsed, the NMR signals of Atotal and A23 decrease all drying conditions, A21 and A22 tend to increase at high moisture content and then decrease, which is consistent with the state of water while changes during drying. NMR signals can be used as indicators for online monitoring of moisture and control of the drying process. With NMR signals as input variables, a BP-ANN model was built optimized by transfer function, training function, and the number of neurons to model the moisture content (output). Compared with a linear regression model and multiple linear regression model, the BP-ANN model with the topology of 4-25-1, transfer function of tansig and purelin, and training function of trainlm outperformed the fitting performance and accuracy. This shows that the combined approach of utilizing LF-NMR and BP-ANN has great potential in intelligent online monitoring and control applications for carrot drying.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11947-018-2231-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1045464", 
        "issn": [
          "1935-5130", 
          "1935-5149"
        ], 
        "name": "Food and Bioprocess Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Combined LF-NMR and Artificial Intelligence for Continuous Real-Time Monitoring of Carrot in Microwave Vacuum Drying", 
    "pagination": "551-562", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "729d288f741090392cc7cde542ccd240cd1df81f427a25b9515878b7c012d67f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11947-018-2231-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111310794"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11947-018-2231-1", 
      "https://app.dimensions.ai/details/publication/pub.1111310794"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68984_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11947-018-2231-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11947-018-2231-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11947-018-2231-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11947-018-2231-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11947-018-2231-1'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11947-018-2231-1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N4e2f41aea3fc4d1782d72e6e42cf13f2
4 schema:citation sg:pub.10.1007/s11947-017-1991-3
5 https://doi.org/10.1002/jsfa.8288
6 https://doi.org/10.1002/jsfa.8801
7 https://doi.org/10.1002/tee.22250
8 https://doi.org/10.1016/j.compag.2017.04.001
9 https://doi.org/10.1016/j.compag.2018.01.006
10 https://doi.org/10.1016/j.fbp.2014.03.005
11 https://doi.org/10.1016/j.foodchem.2015.03.125
12 https://doi.org/10.1016/j.foodchem.2018.01.043
13 https://doi.org/10.1016/j.foodres.2014.06.011
14 https://doi.org/10.1016/j.foodres.2017.03.041
15 https://doi.org/10.1016/j.ifset.2016.06.012
16 https://doi.org/10.1016/j.jfoodeng.2013.06.035
17 https://doi.org/10.1016/j.jpba.2016.08.017
18 https://doi.org/10.1016/j.microc.2016.06.013
19 https://doi.org/10.1016/j.tifs.2006.04.011
20 https://doi.org/10.1080/07373937.2015.1012267
21 https://doi.org/10.1080/07373937.2016.1193512
22 https://doi.org/10.1080/07373937.2016.1231201
23 https://doi.org/10.1080/07373937.2017.1300807
24 https://doi.org/10.1080/07373937.2017.1323336
25 https://doi.org/10.1080/07373937.2017.1357569
26 https://doi.org/10.1080/07373937.2017.1418751
27 https://doi.org/10.1080/07373937.2018.1432643
28 https://doi.org/10.1080/10408398.2014.979280
29 https://doi.org/10.1080/10408398.2015.1074158
30 https://doi.org/10.1080/10408398.2018.1446900
31 https://doi.org/10.1111/j.1365-2621.2012.03007.x
32 https://doi.org/10.1155/2014/425341
33 schema:datePublished 2019-04
34 schema:datePublishedReg 2019-04-01
35 schema:description In this paper, intelligent technology of combined low field NMR (LF-NMR) and back propagation artificial neural network (BP-ANN) was used to monitor moisture content in carrot during microwave vacuum drying. The relationship between different drying powers (200, 300, and 400 W) and NMR signals (A21, A22, A23, and Atotal) was investigated. Results show that as the drying time elapsed, the NMR signals of Atotal and A23 decrease all drying conditions, A21 and A22 tend to increase at high moisture content and then decrease, which is consistent with the state of water while changes during drying. NMR signals can be used as indicators for online monitoring of moisture and control of the drying process. With NMR signals as input variables, a BP-ANN model was built optimized by transfer function, training function, and the number of neurons to model the moisture content (output). Compared with a linear regression model and multiple linear regression model, the BP-ANN model with the topology of 4-25-1, transfer function of tansig and purelin, and training function of trainlm outperformed the fitting performance and accuracy. This shows that the combined approach of utilizing LF-NMR and BP-ANN has great potential in intelligent online monitoring and control applications for carrot drying.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N492e054995c6481bbe443063e7047a1e
40 Nf7d6bc5f06de4791a71541ddbf8ee0a5
41 sg:journal.1045464
42 schema:name Combined LF-NMR and Artificial Intelligence for Continuous Real-Time Monitoring of Carrot in Microwave Vacuum Drying
43 schema:pagination 551-562
44 schema:productId N248412d805a54878bf70b9b14de3ca36
45 N82b44d661fb2403d829c19d32a4ec40f
46 Nd6f49f4f8fe842979c4cf5fc7f1135f7
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111310794
48 https://doi.org/10.1007/s11947-018-2231-1
49 schema:sdDatePublished 2019-04-11T13:25
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher Nbfb5e32e1b274965945060ef8ec4bdb7
52 schema:url https://link.springer.com/10.1007%2Fs11947-018-2231-1
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N248412d805a54878bf70b9b14de3ca36 schema:name doi
57 schema:value 10.1007/s11947-018-2231-1
58 rdf:type schema:PropertyValue
59 N3de9409eef224d67940b779f3ec098f0 schema:affiliation https://www.grid.ac/institutes/grid.14709.3b
60 schema:familyName Mujumdar
61 schema:givenName Arun S.
62 rdf:type schema:Person
63 N464db1b5f304472d8960d839c9f06058 schema:name Suzhou Niumang Analytical Instrument Corporation, 215000, Suzhou, Jiangsu, China
64 rdf:type schema:Organization
65 N492e054995c6481bbe443063e7047a1e schema:issueNumber 4
66 rdf:type schema:PublicationIssue
67 N4e2f41aea3fc4d1782d72e6e42cf13f2 rdf:first sg:person.015153255174.80
68 rdf:rest Nd2beedf185e74ba8ba237cd0db2a6124
69 N716caf8b482d4d48bb1fb895d49fb6a8 schema:affiliation N464db1b5f304472d8960d839c9f06058
70 schema:familyName Yang
71 schema:givenName Peiqiang
72 rdf:type schema:Person
73 N82b44d661fb2403d829c19d32a4ec40f schema:name dimensions_id
74 schema:value pub.1111310794
75 rdf:type schema:PropertyValue
76 Naa0c1d4e175141ad8c2b522468a7ee6f rdf:first N3de9409eef224d67940b779f3ec098f0
77 rdf:rest Nc9f69a364ebc4ba79025baab140230b7
78 Nbfb5e32e1b274965945060ef8ec4bdb7 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 Nc9f69a364ebc4ba79025baab140230b7 rdf:first N716caf8b482d4d48bb1fb895d49fb6a8
81 rdf:rest rdf:nil
82 Nd2beedf185e74ba8ba237cd0db2a6124 rdf:first sg:person.015240150061.41
83 rdf:rest Naa0c1d4e175141ad8c2b522468a7ee6f
84 Nd6f49f4f8fe842979c4cf5fc7f1135f7 schema:name readcube_id
85 schema:value 729d288f741090392cc7cde542ccd240cd1df81f427a25b9515878b7c012d67f
86 rdf:type schema:PropertyValue
87 Nf7d6bc5f06de4791a71541ddbf8ee0a5 schema:volumeNumber 12
88 rdf:type schema:PublicationVolume
89 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
90 schema:name Information and Computing Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
93 schema:name Artificial Intelligence and Image Processing
94 rdf:type schema:DefinedTerm
95 sg:journal.1045464 schema:issn 1935-5130
96 1935-5149
97 schema:name Food and Bioprocess Technology
98 rdf:type schema:Periodical
99 sg:person.015153255174.80 schema:affiliation https://www.grid.ac/institutes/grid.258151.a
100 schema:familyName Sun
101 schema:givenName Qing
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015153255174.80
103 rdf:type schema:Person
104 sg:person.015240150061.41 schema:affiliation https://www.grid.ac/institutes/grid.258151.a
105 schema:familyName Zhang
106 schema:givenName Min
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015240150061.41
108 rdf:type schema:Person
109 sg:pub.10.1007/s11947-017-1991-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091942930
110 https://doi.org/10.1007/s11947-017-1991-3
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1002/jsfa.8288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083862761
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1002/jsfa.8801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093062593
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1002/tee.22250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039763072
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.compag.2017.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084745843
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.compag.2018.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100830741
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.fbp.2014.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017412894
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.foodchem.2015.03.125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001488773
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.foodchem.2018.01.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100200716
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.foodres.2014.06.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011642029
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.foodres.2017.03.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084075220
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.ifset.2016.06.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006727101
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.jfoodeng.2013.06.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026371568
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.jpba.2016.08.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007573917
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.microc.2016.06.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039197836
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.tifs.2006.04.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002001987
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1080/07373937.2015.1012267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039015268
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1080/07373937.2016.1193512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021338254
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1080/07373937.2016.1231201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020566894
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1080/07373937.2017.1300807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085481405
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1080/07373937.2017.1323336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085952052
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1080/07373937.2017.1357569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090972299
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1080/07373937.2017.1418751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100560147
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1080/07373937.2018.1432643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101002538
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1080/10408398.2014.979280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010151206
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1080/10408398.2015.1074158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029191687
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1080/10408398.2018.1446900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101292228
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1111/j.1365-2621.2012.03007.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043725958
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1155/2014/425341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035974146
167 rdf:type schema:CreativeWork
168 https://www.grid.ac/institutes/grid.14709.3b schema:alternateName McGill University
169 schema:name Department of Bioresource Engineering, Macdonald Campus, McGill University, H9X 3V9, Ste. Anne de Bellevue, Quebec, Canada
170 rdf:type schema:Organization
171 https://www.grid.ac/institutes/grid.258151.a schema:alternateName Jiangnan University
172 schema:name State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu Province, China
173 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...