Hepatitis C Virus-Genotype 3: Update on Current and Emergent Therapeutic Interventions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-04-18

AUTHORS

Steven W. Johnson, Dorothea K. Thompson, Brianne Raccor

ABSTRACT

Purpose of ReviewDirect-acting antiviral agents (DAAs) have markedly improved the prognosis of hepatitis C virus (HCV)-genotype 3 (GT3), a highly prevalent infection worldwide. However, in patients with hepatic fibrosis, cirrhosis, or hepatocellular carcinoma (HCC), GT3 infection presents a treatment challenge compared with other genotypes. The dependence of the HCV life cycle on host lipid metabolism suggests the possible utility of targeting host cellular factors for combination anti-HCV therapy. We discuss current and emergent DAA regimens for HCV-GT3 treatment. We then summarize recent research findings on the reliance of HCV entry, replication, and virion assembly on host lipid metabolism.Recent FindingsCurrent HCV treatment guidelines recommend the use of daclatasvir plus sofosbuvir (DCV/SOF) or sofosbuvir plus velpatasvir (SOF/VEL) for the management of GT3 based upon clinical efficacy [≥88% overall sustained virological response (SVR)] and tolerability. Potential future DAA options, such as SOF/VEL co-formulated with GS-9857, also look promising in treating cirrhotic GT3 patients. However, HCV resistance to DAAs will likely continue to impact the therapeutic efficacy of interferon-free treatment regimens. Disruption of HCV entry by targeting required host cellular receptors shows potential in minimizing HCV resistance and broadening therapeutic options for certain subpopulations of GT3 patients. The use of cholesterol biosynthesis and transport inhibitors may also improve health outcomes for GT3 patients when used synergistically with DAAs.SummaryDue to the morbidity and mortality associated with HCV-GT3 infection compared to other genotypes, efforts should be made to address current limitations in the therapeutic prevention and management of HCV-GT3 infection. More... »

PAGES

22

References to SciGraph publications

  • 2006-11-27. Structural and mechanistic insights into hepatitis C viral translation initiation in NATURE REVIEWS MICROBIOLOGY
  • 2012-01-08. Identification of the Niemann-Pick C1–like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor in NATURE MEDICINE
  • 2008-11-07. A patient with gallbladder cancer with paraaortic lymph node and hepatic metastases who has survived for more than 13 years after the primary extended radical operation in JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES
  • 2011-04-11. An overview of HCV molecular biology, replication and immune responses in VIROLOGY JOURNAL
  • 2016-02-22. CD36 is a co-receptor for hepatitis C virus E1 protein attachment in SCIENTIFIC REPORTS
  • 2015-10-22. Transcriptional regulation of hepatic lipogenesis in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2009-02-01. Human occludin is a hepatitis C virus entry factor required for infection of mouse cells in NATURE
  • 2011-04-24. EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy in NATURE MEDICINE
  • 2007-08-26. The lipid droplet is an important organelle for hepatitis C virus production in NATURE CELL BIOLOGY
  • 1992-11. Association of hepatitis C virus in human sera with β-lipoprotein in MEDICAL MICROBIOLOGY AND IMMUNOLOGY
  • 2010-10-10. Efficient hepatitis C virus particle formation requires diacylglycerol acyltransferase-1 in NATURE MEDICINE
  • 2007-02-25. Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11908-017-0578-5

    DOI

    http://dx.doi.org/10.1007/s11908-017-0578-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1084901879

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28421422


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1108", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical Microbiology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Pharmacy Practice, Campbell University College of Pharmacy & Health Sciences, 27506, Buies Creek, NC, USA", 
              "id": "http://www.grid.ac/institutes/grid.253606.4", 
              "name": [
                "Forsyth Medical Center, 27103, Winston-Salem, NC, USA", 
                "Department of Pharmacy Practice, Campbell University College of Pharmacy & Health Sciences, 27506, Buies Creek, NC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Johnson", 
            "givenName": "Steven W.", 
            "id": "sg:person.01012672134.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012672134.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Pharmaceutical Sciences, Campbell University College of Pharmacy & Health Sciences, PO Box 1090, 27506, Buies Creek, NC, USA", 
              "id": "http://www.grid.ac/institutes/grid.253606.4", 
              "name": [
                "Department of Pharmaceutical Sciences, Campbell University College of Pharmacy & Health Sciences, PO Box 1090, 27506, Buies Creek, NC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Thompson", 
            "givenName": "Dorothea K.", 
            "id": "sg:person.01054446207.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054446207.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Pharmaceutical Sciences, Campbell University College of Pharmacy & Health Sciences, PO Box 1090, 27506, Buies Creek, NC, USA", 
              "id": "http://www.grid.ac/institutes/grid.253606.4", 
              "name": [
                "Department of Pharmaceutical Sciences, Campbell University College of Pharmacy & Health Sciences, PO Box 1090, 27506, Buies Creek, NC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Raccor", 
            "givenName": "Brianne", 
            "id": "sg:person.0666564723.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666564723.54"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/1743-422x-8-161", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006562732", 
              "https://doi.org/10.1186/1743-422x-8-161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncb1631", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013173208", 
              "https://doi.org/10.1038/ncb1631"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05654", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030827907", 
              "https://doi.org/10.1038/nature05654"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm.2238", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010939223", 
              "https://doi.org/10.1038/nm.2238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm4074", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020513835", 
              "https://doi.org/10.1038/nrm4074"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep21808", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031442554", 
              "https://doi.org/10.1038/srep21808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00198849", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014767491", 
              "https://doi.org/10.1007/bf00198849"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm.2581", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032636814", 
              "https://doi.org/10.1038/nm.2581"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00534-007-1316-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023427677", 
              "https://doi.org/10.1007/s00534-007-1316-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm.2341", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020585132", 
              "https://doi.org/10.1038/nm.2341"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro1558", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020344968", 
              "https://doi.org/10.1038/nrmicro1558"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07684", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044772574", 
              "https://doi.org/10.1038/nature07684"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-04-18", 
        "datePublishedReg": "2017-04-18", 
        "description": "Purpose of ReviewDirect-acting antiviral agents (DAAs) have markedly improved the prognosis of hepatitis C virus (HCV)-genotype 3 (GT3), a highly prevalent infection worldwide. However, in patients with hepatic fibrosis, cirrhosis, or hepatocellular carcinoma (HCC), GT3 infection presents a treatment challenge compared with other genotypes. The dependence of the HCV life cycle on host lipid metabolism suggests the possible utility of targeting host cellular factors for combination anti-HCV therapy. We discuss current and emergent DAA regimens for HCV-GT3 treatment. We then summarize recent research findings on the reliance of HCV entry, replication, and virion assembly on host lipid metabolism.Recent FindingsCurrent HCV treatment guidelines recommend the use of daclatasvir plus sofosbuvir (DCV/SOF) or sofosbuvir plus velpatasvir (SOF/VEL) for the management of GT3 based upon clinical efficacy [\u226588% overall sustained virological response (SVR)] and tolerability. Potential future DAA options, such as SOF/VEL co-formulated with GS-9857, also look promising in treating cirrhotic GT3 patients. However, HCV resistance to DAAs will likely continue to impact the therapeutic efficacy of interferon-free treatment regimens. Disruption of HCV entry by targeting required host cellular receptors shows potential in minimizing HCV resistance and broadening therapeutic options for certain subpopulations of GT3 patients. The use of cholesterol biosynthesis and transport inhibitors may also improve health outcomes for GT3 patients when used synergistically with DAAs.SummaryDue to the morbidity and mortality associated with HCV-GT3 infection compared to other genotypes, efforts should be made to address current limitations in the therapeutic prevention and management of HCV-GT3 infection.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11908-017-0578-5", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1021184", 
            "issn": [
              "1523-3847", 
              "1534-3146"
            ], 
            "name": "Current Infectious Disease Reports", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "19"
          }
        ], 
        "keywords": [
          "HCV GT3 infection", 
          "host lipid metabolism", 
          "GT3 patients", 
          "genotype 3", 
          "HCV entry", 
          "hepatocellular carcinoma", 
          "HCV resistance", 
          "interferon-free treatment regimens", 
          "lipid metabolism", 
          "HCV treatment guidelines", 
          "use of daclatasvir", 
          "SOF/VEL", 
          "anti-HCV therapy", 
          "hepatitis C virus", 
          "HCV life cycle", 
          "host cellular factors", 
          "emergent therapeutic interventions", 
          "GT3 infection", 
          "DAA regimens", 
          "treatment guidelines", 
          "clinical efficacy", 
          "treatment regimens", 
          "host cellular receptors", 
          "therapeutic options", 
          "prevalent infection", 
          "C virus", 
          "hepatic fibrosis", 
          "treatment challenges", 
          "therapeutic prevention", 
          "antiviral agents", 
          "therapeutic efficacy", 
          "health outcomes", 
          "therapeutic interventions", 
          "patients", 
          "certain subpopulations", 
          "infection", 
          "cellular receptors", 
          "regimens", 
          "sofosbuvir", 
          "cholesterol biosynthesis", 
          "recent research findings", 
          "cellular factors", 
          "efficacy", 
          "possible utility", 
          "DAA", 
          "transport inhibitors", 
          "metabolism", 
          "cirrhosis", 
          "tolerability", 
          "morbidity", 
          "prognosis", 
          "carcinoma", 
          "daclatasvir", 
          "fibrosis", 
          "options", 
          "therapy", 
          "SummaryDue", 
          "virion assembly", 
          "velpatasvir", 
          "mortality", 
          "genotypes", 
          "prevention", 
          "receptors", 
          "outcomes", 
          "intervention", 
          "management", 
          "virus", 
          "treatment", 
          "subpopulations", 
          "inhibitors", 
          "entry", 
          "guidelines", 
          "resistance", 
          "agents", 
          "findings", 
          "use", 
          "disruption", 
          "factors", 
          "replication", 
          "research findings", 
          "GS", 
          "utility", 
          "Vel", 
          "current limitations", 
          "purpose", 
          "life cycle", 
          "biosynthesis", 
          "challenges", 
          "limitations", 
          "cycle", 
          "efforts", 
          "reliance", 
          "dependence", 
          "assembly"
        ], 
        "name": "Hepatitis C Virus-Genotype 3: Update on Current and Emergent Therapeutic Interventions", 
        "pagination": "22", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1084901879"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11908-017-0578-5"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28421422"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11908-017-0578-5", 
          "https://app.dimensions.ai/details/publication/pub.1084901879"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_749.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11908-017-0578-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11908-017-0578-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11908-017-0578-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11908-017-0578-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11908-017-0578-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    224 TRIPLES      21 PREDICATES      132 URIs      111 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11908-017-0578-5 schema:about anzsrc-for:11
    2 anzsrc-for:1103
    3 anzsrc-for:1108
    4 schema:author Na9abb728e58e4b0e9f255a19b7a09940
    5 schema:citation sg:pub.10.1007/bf00198849
    6 sg:pub.10.1007/s00534-007-1316-4
    7 sg:pub.10.1038/nature05654
    8 sg:pub.10.1038/nature07684
    9 sg:pub.10.1038/ncb1631
    10 sg:pub.10.1038/nm.2238
    11 sg:pub.10.1038/nm.2341
    12 sg:pub.10.1038/nm.2581
    13 sg:pub.10.1038/nrm4074
    14 sg:pub.10.1038/nrmicro1558
    15 sg:pub.10.1038/srep21808
    16 sg:pub.10.1186/1743-422x-8-161
    17 schema:datePublished 2017-04-18
    18 schema:datePublishedReg 2017-04-18
    19 schema:description Purpose of ReviewDirect-acting antiviral agents (DAAs) have markedly improved the prognosis of hepatitis C virus (HCV)-genotype 3 (GT3), a highly prevalent infection worldwide. However, in patients with hepatic fibrosis, cirrhosis, or hepatocellular carcinoma (HCC), GT3 infection presents a treatment challenge compared with other genotypes. The dependence of the HCV life cycle on host lipid metabolism suggests the possible utility of targeting host cellular factors for combination anti-HCV therapy. We discuss current and emergent DAA regimens for HCV-GT3 treatment. We then summarize recent research findings on the reliance of HCV entry, replication, and virion assembly on host lipid metabolism.Recent FindingsCurrent HCV treatment guidelines recommend the use of daclatasvir plus sofosbuvir (DCV/SOF) or sofosbuvir plus velpatasvir (SOF/VEL) for the management of GT3 based upon clinical efficacy [≥88% overall sustained virological response (SVR)] and tolerability. Potential future DAA options, such as SOF/VEL co-formulated with GS-9857, also look promising in treating cirrhotic GT3 patients. However, HCV resistance to DAAs will likely continue to impact the therapeutic efficacy of interferon-free treatment regimens. Disruption of HCV entry by targeting required host cellular receptors shows potential in minimizing HCV resistance and broadening therapeutic options for certain subpopulations of GT3 patients. The use of cholesterol biosynthesis and transport inhibitors may also improve health outcomes for GT3 patients when used synergistically with DAAs.SummaryDue to the morbidity and mortality associated with HCV-GT3 infection compared to other genotypes, efforts should be made to address current limitations in the therapeutic prevention and management of HCV-GT3 infection.
    20 schema:genre article
    21 schema:isAccessibleForFree false
    22 schema:isPartOf N6b5cdb3d842a4f7fa50bed02455ece82
    23 Nf86322c05a764493a975e2f251b61d52
    24 sg:journal.1021184
    25 schema:keywords C virus
    26 DAA
    27 DAA regimens
    28 GS
    29 GT3 infection
    30 GT3 patients
    31 HCV GT3 infection
    32 HCV entry
    33 HCV life cycle
    34 HCV resistance
    35 HCV treatment guidelines
    36 SOF/VEL
    37 SummaryDue
    38 Vel
    39 agents
    40 anti-HCV therapy
    41 antiviral agents
    42 assembly
    43 biosynthesis
    44 carcinoma
    45 cellular factors
    46 cellular receptors
    47 certain subpopulations
    48 challenges
    49 cholesterol biosynthesis
    50 cirrhosis
    51 clinical efficacy
    52 current limitations
    53 cycle
    54 daclatasvir
    55 dependence
    56 disruption
    57 efficacy
    58 efforts
    59 emergent therapeutic interventions
    60 entry
    61 factors
    62 fibrosis
    63 findings
    64 genotype 3
    65 genotypes
    66 guidelines
    67 health outcomes
    68 hepatic fibrosis
    69 hepatitis C virus
    70 hepatocellular carcinoma
    71 host cellular factors
    72 host cellular receptors
    73 host lipid metabolism
    74 infection
    75 inhibitors
    76 interferon-free treatment regimens
    77 intervention
    78 life cycle
    79 limitations
    80 lipid metabolism
    81 management
    82 metabolism
    83 morbidity
    84 mortality
    85 options
    86 outcomes
    87 patients
    88 possible utility
    89 prevalent infection
    90 prevention
    91 prognosis
    92 purpose
    93 recent research findings
    94 receptors
    95 regimens
    96 reliance
    97 replication
    98 research findings
    99 resistance
    100 sofosbuvir
    101 subpopulations
    102 therapeutic efficacy
    103 therapeutic interventions
    104 therapeutic options
    105 therapeutic prevention
    106 therapy
    107 tolerability
    108 transport inhibitors
    109 treatment
    110 treatment challenges
    111 treatment guidelines
    112 treatment regimens
    113 use
    114 use of daclatasvir
    115 utility
    116 velpatasvir
    117 virion assembly
    118 virus
    119 schema:name Hepatitis C Virus-Genotype 3: Update on Current and Emergent Therapeutic Interventions
    120 schema:pagination 22
    121 schema:productId N18e6c4835cb74b529592aa12f2201664
    122 N225478f189434952896fdb38e9051da1
    123 Nd13b7321e88f4bf2a628b2af6dea0d43
    124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084901879
    125 https://doi.org/10.1007/s11908-017-0578-5
    126 schema:sdDatePublished 2022-12-01T06:36
    127 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    128 schema:sdPublisher N53a1d2998b174eba84cb75897fa0d6bd
    129 schema:url https://doi.org/10.1007/s11908-017-0578-5
    130 sgo:license sg:explorer/license/
    131 sgo:sdDataset articles
    132 rdf:type schema:ScholarlyArticle
    133 N18e6c4835cb74b529592aa12f2201664 schema:name doi
    134 schema:value 10.1007/s11908-017-0578-5
    135 rdf:type schema:PropertyValue
    136 N225478f189434952896fdb38e9051da1 schema:name dimensions_id
    137 schema:value pub.1084901879
    138 rdf:type schema:PropertyValue
    139 N33055623bca4433b89d74694d8ac36a2 rdf:first sg:person.0666564723.54
    140 rdf:rest rdf:nil
    141 N53a1d2998b174eba84cb75897fa0d6bd schema:name Springer Nature - SN SciGraph project
    142 rdf:type schema:Organization
    143 N6b5cdb3d842a4f7fa50bed02455ece82 schema:volumeNumber 19
    144 rdf:type schema:PublicationVolume
    145 N975af05f959840c999e046aa33bafcd3 rdf:first sg:person.01054446207.21
    146 rdf:rest N33055623bca4433b89d74694d8ac36a2
    147 Na9abb728e58e4b0e9f255a19b7a09940 rdf:first sg:person.01012672134.62
    148 rdf:rest N975af05f959840c999e046aa33bafcd3
    149 Nd13b7321e88f4bf2a628b2af6dea0d43 schema:name pubmed_id
    150 schema:value 28421422
    151 rdf:type schema:PropertyValue
    152 Nf86322c05a764493a975e2f251b61d52 schema:issueNumber 6
    153 rdf:type schema:PublicationIssue
    154 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    155 schema:name Medical and Health Sciences
    156 rdf:type schema:DefinedTerm
    157 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    158 schema:name Clinical Sciences
    159 rdf:type schema:DefinedTerm
    160 anzsrc-for:1108 schema:inDefinedTermSet anzsrc-for:
    161 schema:name Medical Microbiology
    162 rdf:type schema:DefinedTerm
    163 sg:journal.1021184 schema:issn 1523-3847
    164 1534-3146
    165 schema:name Current Infectious Disease Reports
    166 schema:publisher Springer Nature
    167 rdf:type schema:Periodical
    168 sg:person.01012672134.62 schema:affiliation grid-institutes:grid.253606.4
    169 schema:familyName Johnson
    170 schema:givenName Steven W.
    171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012672134.62
    172 rdf:type schema:Person
    173 sg:person.01054446207.21 schema:affiliation grid-institutes:grid.253606.4
    174 schema:familyName Thompson
    175 schema:givenName Dorothea K.
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054446207.21
    177 rdf:type schema:Person
    178 sg:person.0666564723.54 schema:affiliation grid-institutes:grid.253606.4
    179 schema:familyName Raccor
    180 schema:givenName Brianne
    181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666564723.54
    182 rdf:type schema:Person
    183 sg:pub.10.1007/bf00198849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014767491
    184 https://doi.org/10.1007/bf00198849
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/s00534-007-1316-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023427677
    187 https://doi.org/10.1007/s00534-007-1316-4
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1038/nature05654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030827907
    190 https://doi.org/10.1038/nature05654
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1038/nature07684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044772574
    193 https://doi.org/10.1038/nature07684
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1038/ncb1631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013173208
    196 https://doi.org/10.1038/ncb1631
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/nm.2238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010939223
    199 https://doi.org/10.1038/nm.2238
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/nm.2341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020585132
    202 https://doi.org/10.1038/nm.2341
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1038/nm.2581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032636814
    205 https://doi.org/10.1038/nm.2581
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/nrm4074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020513835
    208 https://doi.org/10.1038/nrm4074
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/nrmicro1558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020344968
    211 https://doi.org/10.1038/nrmicro1558
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/srep21808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031442554
    214 https://doi.org/10.1038/srep21808
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1186/1743-422x-8-161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006562732
    217 https://doi.org/10.1186/1743-422x-8-161
    218 rdf:type schema:CreativeWork
    219 grid-institutes:grid.253606.4 schema:alternateName Department of Pharmaceutical Sciences, Campbell University College of Pharmacy & Health Sciences, PO Box 1090, 27506, Buies Creek, NC, USA
    220 Department of Pharmacy Practice, Campbell University College of Pharmacy & Health Sciences, 27506, Buies Creek, NC, USA
    221 schema:name Department of Pharmaceutical Sciences, Campbell University College of Pharmacy & Health Sciences, PO Box 1090, 27506, Buies Creek, NC, USA
    222 Department of Pharmacy Practice, Campbell University College of Pharmacy & Health Sciences, 27506, Buies Creek, NC, USA
    223 Forsyth Medical Center, 27103, Winston-Salem, NC, USA
    224 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...