Ontology type: schema:ScholarlyArticle
2021-11-23
AUTHORSCraig Bennell, Rebecca Mugford, Jessica Woodhams, Eric Beauregard, Brittany Blaskovits
ABSTRACTStudies have shown that it is possible to link serial crimes in an accurate fashion based on the statistical analysis of crime scene information. Logistic regression (LR) is one of the most common statistical methods in use and yields relatively accurate linking decisions. However, some research suggests there may be added value in using classification tree (CT) analysis to discriminate between offences committed by the same vs. different offenders. This study explored how three variations of CT analysis can be applied to the crime linkage task. Drawing on a sample of serial sexual assaults from Quebec, Canada, we examine the predictive accuracy of standard, iterative, and multiple CTs, and we contrast the results with LR analysis. Our results revealed that all statistical approaches achieved relatively high (and similar) levels of predictive accuracy, but CTs produce idiographic linking strategies that may be more appealing to practitioners. Future research will need to examine if and how these CTs can be useful as decision aides in operational settings. More... »
PAGES691-705
http://scigraph.springernature.com/pub.10.1007/s11896-021-09483-6
DOIhttp://dx.doi.org/10.1007/s11896-021-09483-6
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1142733429
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/16",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Studies in Human Society",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Psychology and Cognitive Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1602",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Criminology",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Psychology",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Psychology, Carleton University, 1125 Colonel by Drive, Ottawa, ON, Canada",
"id": "http://www.grid.ac/institutes/grid.34428.39",
"name": [
"Department of Psychology, Carleton University, 1125 Colonel by Drive, Ottawa, ON, Canada"
],
"type": "Organization"
},
"familyName": "Bennell",
"givenName": "Craig",
"id": "sg:person.011476436601.16",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011476436601.16"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Psychology, Carleton University, 1125 Colonel by Drive, Ottawa, ON, Canada",
"id": "http://www.grid.ac/institutes/grid.34428.39",
"name": [
"Department of Psychology, Carleton University, 1125 Colonel by Drive, Ottawa, ON, Canada"
],
"type": "Organization"
},
"familyName": "Mugford",
"givenName": "Rebecca",
"id": "sg:person.011415020753.45",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011415020753.45"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "School of Psychology, University of Birmingham, Birmingham, UK",
"id": "http://www.grid.ac/institutes/grid.6572.6",
"name": [
"School of Psychology, University of Birmingham, Birmingham, UK"
],
"type": "Organization"
},
"familyName": "Woodhams",
"givenName": "Jessica",
"id": "sg:person.01172664570.92",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172664570.92"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "School of Criminology, Simon Fraser University, Burnaby, BC, Canada",
"id": "http://www.grid.ac/institutes/grid.61971.38",
"name": [
"School of Criminology, Simon Fraser University, Burnaby, BC, Canada"
],
"type": "Organization"
},
"familyName": "Beauregard",
"givenName": "Eric",
"id": "sg:person.01044027251.88",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044027251.88"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Psychology, Carleton University, 1125 Colonel by Drive, Ottawa, ON, Canada",
"id": "http://www.grid.ac/institutes/grid.34428.39",
"name": [
"Department of Psychology, Carleton University, 1125 Colonel by Drive, Ottawa, ON, Canada"
],
"type": "Organization"
},
"familyName": "Blaskovits",
"givenName": "Brittany",
"id": "sg:person.0723270123.85",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723270123.85"
],
"type": "Person"
}
],
"datePublished": "2021-11-23",
"datePublishedReg": "2021-11-23",
"description": "Studies have shown that it is possible to link serial crimes in an accurate fashion based on the statistical analysis of crime scene information. Logistic regression (LR) is one of the most common statistical methods in use and yields relatively accurate linking decisions. However, some research suggests there may be added value in using classification tree (CT) analysis to discriminate between offences committed by the same vs. different offenders. This study explored how three variations of CT analysis can be applied to the crime linkage task. Drawing on a sample of serial sexual assaults from Quebec, Canada, we examine the predictive accuracy of standard, iterative, and multiple CTs, and we contrast the results with LR analysis. Our results revealed that all statistical approaches achieved relatively high (and similar) levels of predictive accuracy, but CTs produce idiographic linking strategies that may be more appealing to practitioners. Future research will need to examine if and how these CTs can be useful as decision aides in operational settings.",
"genre": "article",
"id": "sg:pub.10.1007/s11896-021-09483-6",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1053097",
"issn": [
"0882-0783",
"1936-6469"
],
"name": "Journal of Police and Criminal Psychology",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "36"
}
],
"keywords": [
"common statistical methods",
"statistical methods",
"statistical approach",
"accurate fashion",
"predictive accuracy",
"statistical analysis",
"accuracy",
"LR analysis",
"classification trees",
"linkage task",
"operational settings",
"classification tree analysis",
"analysis",
"results",
"approach",
"serial crimes",
"tree analysis",
"regression",
"values",
"variation",
"decision aides",
"information",
"task",
"trees",
"fashion",
"use",
"decisions",
"research",
"logistic regression",
"strategies",
"setting",
"study",
"samples",
"scene information",
"levels",
"future research",
"standards",
"yield",
"practitioners",
"high levels",
"vs.",
"aides",
"Quebec",
"Canada",
"crime",
"CT analysis",
"CT",
"offenses",
"crime scene information",
"serial sexual assaults",
"sexual assault",
"sex offenses",
"method",
"assault",
"same vs.",
"multiple CTs",
"multiple classification trees"
],
"name": "Linking Serial Sex Offences Using Standard, Iterative, and Multiple Classification Trees",
"pagination": "691-705",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1142733429"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11896-021-09483-6"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11896-021-09483-6",
"https://app.dimensions.ai/details/publication/pub.1142733429"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:37",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_874.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11896-021-09483-6"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11896-021-09483-6'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11896-021-09483-6'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11896-021-09483-6'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11896-021-09483-6'
This table displays all metadata directly associated to this object as RDF triples.
157 TRIPLES
21 PREDICATES
84 URIs
74 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s11896-021-09483-6 | schema:about | anzsrc-for:16 |
2 | ″ | ″ | anzsrc-for:1602 |
3 | ″ | ″ | anzsrc-for:17 |
4 | ″ | ″ | anzsrc-for:1701 |
5 | ″ | schema:author | Nd9c70b5b416c4c9f9ce3642e8b6617f5 |
6 | ″ | schema:datePublished | 2021-11-23 |
7 | ″ | schema:datePublishedReg | 2021-11-23 |
8 | ″ | schema:description | Studies have shown that it is possible to link serial crimes in an accurate fashion based on the statistical analysis of crime scene information. Logistic regression (LR) is one of the most common statistical methods in use and yields relatively accurate linking decisions. However, some research suggests there may be added value in using classification tree (CT) analysis to discriminate between offences committed by the same vs. different offenders. This study explored how three variations of CT analysis can be applied to the crime linkage task. Drawing on a sample of serial sexual assaults from Quebec, Canada, we examine the predictive accuracy of standard, iterative, and multiple CTs, and we contrast the results with LR analysis. Our results revealed that all statistical approaches achieved relatively high (and similar) levels of predictive accuracy, but CTs produce idiographic linking strategies that may be more appealing to practitioners. Future research will need to examine if and how these CTs can be useful as decision aides in operational settings. |
9 | ″ | schema:genre | article |
10 | ″ | schema:inLanguage | en |
11 | ″ | schema:isAccessibleForFree | false |
12 | ″ | schema:isPartOf | N221964242ddb42f0a2579b6c3f509013 |
13 | ″ | ″ | Na1ac8d27990f4db68f031ca364312d9b |
14 | ″ | ″ | sg:journal.1053097 |
15 | ″ | schema:keywords | CT |
16 | ″ | ″ | CT analysis |
17 | ″ | ″ | Canada |
18 | ″ | ″ | LR analysis |
19 | ″ | ″ | Quebec |
20 | ″ | ″ | accuracy |
21 | ″ | ″ | accurate fashion |
22 | ″ | ″ | aides |
23 | ″ | ″ | analysis |
24 | ″ | ″ | approach |
25 | ″ | ″ | assault |
26 | ″ | ″ | classification tree analysis |
27 | ″ | ″ | classification trees |
28 | ″ | ″ | common statistical methods |
29 | ″ | ″ | crime |
30 | ″ | ″ | crime scene information |
31 | ″ | ″ | decision aides |
32 | ″ | ″ | decisions |
33 | ″ | ″ | fashion |
34 | ″ | ″ | future research |
35 | ″ | ″ | high levels |
36 | ″ | ″ | information |
37 | ″ | ″ | levels |
38 | ″ | ″ | linkage task |
39 | ″ | ″ | logistic regression |
40 | ″ | ″ | method |
41 | ″ | ″ | multiple CTs |
42 | ″ | ″ | multiple classification trees |
43 | ″ | ″ | offenses |
44 | ″ | ″ | operational settings |
45 | ″ | ″ | practitioners |
46 | ″ | ″ | predictive accuracy |
47 | ″ | ″ | regression |
48 | ″ | ″ | research |
49 | ″ | ″ | results |
50 | ″ | ″ | same vs. |
51 | ″ | ″ | samples |
52 | ″ | ″ | scene information |
53 | ″ | ″ | serial crimes |
54 | ″ | ″ | serial sexual assaults |
55 | ″ | ″ | setting |
56 | ″ | ″ | sex offenses |
57 | ″ | ″ | sexual assault |
58 | ″ | ″ | standards |
59 | ″ | ″ | statistical analysis |
60 | ″ | ″ | statistical approach |
61 | ″ | ″ | statistical methods |
62 | ″ | ″ | strategies |
63 | ″ | ″ | study |
64 | ″ | ″ | task |
65 | ″ | ″ | tree analysis |
66 | ″ | ″ | trees |
67 | ″ | ″ | use |
68 | ″ | ″ | values |
69 | ″ | ″ | variation |
70 | ″ | ″ | vs. |
71 | ″ | ″ | yield |
72 | ″ | schema:name | Linking Serial Sex Offences Using Standard, Iterative, and Multiple Classification Trees |
73 | ″ | schema:pagination | 691-705 |
74 | ″ | schema:productId | N36d82960e375486a91cfe110e33bdca8 |
75 | ″ | ″ | Nbcd55168ebec42718c0a403005d40ca5 |
76 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1142733429 |
77 | ″ | ″ | https://doi.org/10.1007/s11896-021-09483-6 |
78 | ″ | schema:sdDatePublished | 2022-05-20T07:37 |
79 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
80 | ″ | schema:sdPublisher | Nc313170c933a4676b8559fefd5e84dc5 |
81 | ″ | schema:url | https://doi.org/10.1007/s11896-021-09483-6 |
82 | ″ | sgo:license | sg:explorer/license/ |
83 | ″ | sgo:sdDataset | articles |
84 | ″ | rdf:type | schema:ScholarlyArticle |
85 | N1cb2676855d4474fa7f722792f562dcd | rdf:first | sg:person.011415020753.45 |
86 | ″ | rdf:rest | N90ccc9aa2e9345e6bea6780e18635ef9 |
87 | N221964242ddb42f0a2579b6c3f509013 | schema:issueNumber | 4 |
88 | ″ | rdf:type | schema:PublicationIssue |
89 | N36d82960e375486a91cfe110e33bdca8 | schema:name | dimensions_id |
90 | ″ | schema:value | pub.1142733429 |
91 | ″ | rdf:type | schema:PropertyValue |
92 | N6420fd7c6e7c4a21aee696b16709472c | rdf:first | sg:person.01044027251.88 |
93 | ″ | rdf:rest | Nec4879e52f52467c8c0698ba58cd9898 |
94 | N90ccc9aa2e9345e6bea6780e18635ef9 | rdf:first | sg:person.01172664570.92 |
95 | ″ | rdf:rest | N6420fd7c6e7c4a21aee696b16709472c |
96 | Na1ac8d27990f4db68f031ca364312d9b | schema:volumeNumber | 36 |
97 | ″ | rdf:type | schema:PublicationVolume |
98 | Nbcd55168ebec42718c0a403005d40ca5 | schema:name | doi |
99 | ″ | schema:value | 10.1007/s11896-021-09483-6 |
100 | ″ | rdf:type | schema:PropertyValue |
101 | Nc313170c933a4676b8559fefd5e84dc5 | schema:name | Springer Nature - SN SciGraph project |
102 | ″ | rdf:type | schema:Organization |
103 | Nd9c70b5b416c4c9f9ce3642e8b6617f5 | rdf:first | sg:person.011476436601.16 |
104 | ″ | rdf:rest | N1cb2676855d4474fa7f722792f562dcd |
105 | Nec4879e52f52467c8c0698ba58cd9898 | rdf:first | sg:person.0723270123.85 |
106 | ″ | rdf:rest | rdf:nil |
107 | anzsrc-for:16 | schema:inDefinedTermSet | anzsrc-for: |
108 | ″ | schema:name | Studies in Human Society |
109 | ″ | rdf:type | schema:DefinedTerm |
110 | anzsrc-for:1602 | schema:inDefinedTermSet | anzsrc-for: |
111 | ″ | schema:name | Criminology |
112 | ″ | rdf:type | schema:DefinedTerm |
113 | anzsrc-for:17 | schema:inDefinedTermSet | anzsrc-for: |
114 | ″ | schema:name | Psychology and Cognitive Sciences |
115 | ″ | rdf:type | schema:DefinedTerm |
116 | anzsrc-for:1701 | schema:inDefinedTermSet | anzsrc-for: |
117 | ″ | schema:name | Psychology |
118 | ″ | rdf:type | schema:DefinedTerm |
119 | sg:journal.1053097 | schema:issn | 0882-0783 |
120 | ″ | ″ | 1936-6469 |
121 | ″ | schema:name | Journal of Police and Criminal Psychology |
122 | ″ | schema:publisher | Springer Nature |
123 | ″ | rdf:type | schema:Periodical |
124 | sg:person.01044027251.88 | schema:affiliation | grid-institutes:grid.61971.38 |
125 | ″ | schema:familyName | Beauregard |
126 | ″ | schema:givenName | Eric |
127 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044027251.88 |
128 | ″ | rdf:type | schema:Person |
129 | sg:person.011415020753.45 | schema:affiliation | grid-institutes:grid.34428.39 |
130 | ″ | schema:familyName | Mugford |
131 | ″ | schema:givenName | Rebecca |
132 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011415020753.45 |
133 | ″ | rdf:type | schema:Person |
134 | sg:person.011476436601.16 | schema:affiliation | grid-institutes:grid.34428.39 |
135 | ″ | schema:familyName | Bennell |
136 | ″ | schema:givenName | Craig |
137 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011476436601.16 |
138 | ″ | rdf:type | schema:Person |
139 | sg:person.01172664570.92 | schema:affiliation | grid-institutes:grid.6572.6 |
140 | ″ | schema:familyName | Woodhams |
141 | ″ | schema:givenName | Jessica |
142 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172664570.92 |
143 | ″ | rdf:type | schema:Person |
144 | sg:person.0723270123.85 | schema:affiliation | grid-institutes:grid.34428.39 |
145 | ″ | schema:familyName | Blaskovits |
146 | ″ | schema:givenName | Brittany |
147 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723270123.85 |
148 | ″ | rdf:type | schema:Person |
149 | grid-institutes:grid.34428.39 | schema:alternateName | Department of Psychology, Carleton University, 1125 Colonel by Drive, Ottawa, ON, Canada |
150 | ″ | schema:name | Department of Psychology, Carleton University, 1125 Colonel by Drive, Ottawa, ON, Canada |
151 | ″ | rdf:type | schema:Organization |
152 | grid-institutes:grid.61971.38 | schema:alternateName | School of Criminology, Simon Fraser University, Burnaby, BC, Canada |
153 | ″ | schema:name | School of Criminology, Simon Fraser University, Burnaby, BC, Canada |
154 | ″ | rdf:type | schema:Organization |
155 | grid-institutes:grid.6572.6 | schema:alternateName | School of Psychology, University of Birmingham, Birmingham, UK |
156 | ″ | schema:name | School of Psychology, University of Birmingham, Birmingham, UK |
157 | ″ | rdf:type | schema:Organization |