Quantitative models for predicting mutations in Lynch syndrome genes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-10

AUTHORS

Sining Chen, David M. Euhus, Giovanni Parmigiani

ABSTRACT

As genotyping for Lynch syndrome has become widespread, more and more people are being counseled about whether to be genotyped for mutations in mismatch repair genes. Recently a number of quantitative models have been developed to identify potential Lynch syndrome patients and serve as decision aids for patients at genetic counseling clinics. In contrast to existing clinical guidelines that give dichotomous classifications, these models provide a probability that a family or individual has Lynch syndrome. These models have been shown to be useful tools in identifying likely carriers of Lynch syndrome mutations. Correctly used, they have the potential to greatly improve the current diagnosis and management of Lynch syndrome families. To help clinicians and genetic counseling professionals understand the differences among these models and use the models wisely, we review the key features of each model and offer some guidelines on their use. More... »

PAGES

206-211

Journal

TITLE

Current Colorectal Cancer Reports

ISSUE

4

VOLUME

3

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11888-007-0032-4

DOI

http://dx.doi.org/10.1007/s11888-007-0032-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027280785


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Chen", 
        "givenName": "Sining", 
        "id": "sg:person.01254166215.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254166215.27"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Euhus", 
        "givenName": "David M.", 
        "id": "sg:person.01365313467.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365313467.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Department of Oncology, Johns Hopkins University School of Medicine, 550 North Broadway, Suite 1103, 21205, Baltimore, MD, USA", 
            "Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 550 North Broadway, Suite 1103, 21205, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parmigiani", 
        "givenName": "Giovanni", 
        "id": "sg:person.01213127733.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213127733.91"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/jnci/djk051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000382638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0016-5085(99)70510-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002202581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmra012242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006436118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm199808203390804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015954847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1399-0004.2006.00577.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017213225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1399-0004.2006.00577.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017213225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/djk077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020822551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/371075a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024767107", 
          "https://doi.org/10.1038/371075a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1399-0004.2007.00746.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028755103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/djh034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029128387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10897-006-9035-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036050475", 
          "https://doi.org/10.1007/s10897-006-9035-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02053699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039820780", 
          "https://doi.org/10.1007/bf02053699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1007/bf02053699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039820780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1197-271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042080593", 
          "https://doi.org/10.1038/ng1197-271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2004.11.084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042174470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa053493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043340379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.296.12.1469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046182520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.296.12.1479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050173803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0092-8674(93)90330-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054549998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.8128251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062652890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2003.03.189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064203493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3748/wjg.v12.i31.4943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071364881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7326/0003-4819-135-8_part_1-200110160-00008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073705143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083350376", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-10", 
    "datePublishedReg": "2007-10-01", 
    "description": "As genotyping for Lynch syndrome has become widespread, more and more people are being counseled about whether to be genotyped for mutations in mismatch repair genes. Recently a number of quantitative models have been developed to identify potential Lynch syndrome patients and serve as decision aids for patients at genetic counseling clinics. In contrast to existing clinical guidelines that give dichotomous classifications, these models provide a probability that a family or individual has Lynch syndrome. These models have been shown to be useful tools in identifying likely carriers of Lynch syndrome mutations. Correctly used, they have the potential to greatly improve the current diagnosis and management of Lynch syndrome families. To help clinicians and genetic counseling professionals understand the differences among these models and use the models wisely, we review the key features of each model and offer some guidelines on their use.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11888-007-0032-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1035689", 
        "issn": [
          "1556-3790", 
          "1556-3804"
        ], 
        "name": "Current Colorectal Cancer Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Quantitative models for predicting mutations in Lynch syndrome genes", 
    "pagination": "206-211", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "81f4ead597246ef4e02190616d4503e4b60e45829930655187ddf1ed09cbc90b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11888-007-0032-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027280785"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11888-007-0032-4", 
      "https://app.dimensions.ai/details/publication/pub.1027280785"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000522.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11888-007-0032-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11888-007-0032-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11888-007-0032-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11888-007-0032-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11888-007-0032-4'


 

This table displays all metadata directly associated to this object as RDF triples.

146 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11888-007-0032-4 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author Ncd104c04f89c44b1b3e42f2048d79e04
4 schema:citation sg:pub.10.1007/bf02053699
5 sg:pub.10.1007/s10897-006-9035-6
6 sg:pub.10.1038/371075a0
7 sg:pub.10.1038/ng1197-271
8 https://app.dimensions.ai/details/publication/pub.1083350376
9 https://doi.org/10.1001/jama.296.12.1469
10 https://doi.org/10.1001/jama.296.12.1479
11 https://doi.org/10.1007/bf02053699
12 https://doi.org/10.1016/0092-8674(93)90330-s
13 https://doi.org/10.1016/s0016-5085(99)70510-x
14 https://doi.org/10.1056/nejm199808203390804
15 https://doi.org/10.1056/nejmoa053493
16 https://doi.org/10.1056/nejmra012242
17 https://doi.org/10.1093/jnci/djh034
18 https://doi.org/10.1093/jnci/djk051
19 https://doi.org/10.1093/jnci/djk077
20 https://doi.org/10.1111/j.1399-0004.2006.00577.x
21 https://doi.org/10.1111/j.1399-0004.2007.00746.x
22 https://doi.org/10.1126/science.8128251
23 https://doi.org/10.1200/jco.2003.03.189
24 https://doi.org/10.1200/jco.2004.11.084
25 https://doi.org/10.3748/wjg.v12.i31.4943
26 https://doi.org/10.7326/0003-4819-135-8_part_1-200110160-00008
27 schema:datePublished 2007-10
28 schema:datePublishedReg 2007-10-01
29 schema:description As genotyping for Lynch syndrome has become widespread, more and more people are being counseled about whether to be genotyped for mutations in mismatch repair genes. Recently a number of quantitative models have been developed to identify potential Lynch syndrome patients and serve as decision aids for patients at genetic counseling clinics. In contrast to existing clinical guidelines that give dichotomous classifications, these models provide a probability that a family or individual has Lynch syndrome. These models have been shown to be useful tools in identifying likely carriers of Lynch syndrome mutations. Correctly used, they have the potential to greatly improve the current diagnosis and management of Lynch syndrome families. To help clinicians and genetic counseling professionals understand the differences among these models and use the models wisely, we review the key features of each model and offer some guidelines on their use.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N0ee1eb39594e48e9b194f8ce1054d05d
34 Nca11bb0fd0c54be9b642aeb7a376d6af
35 sg:journal.1035689
36 schema:name Quantitative models for predicting mutations in Lynch syndrome genes
37 schema:pagination 206-211
38 schema:productId N2ce31007b65f44009ace8cb677b0eae4
39 N58a8a1ad6c084fa098bea042db6ab580
40 N862ee645153143699d090d6a527f6ac0
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027280785
42 https://doi.org/10.1007/s11888-007-0032-4
43 schema:sdDatePublished 2019-04-10T15:03
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N3e0bea5eb6e84414b0f5525234bdc73d
46 schema:url http://link.springer.com/10.1007%2Fs11888-007-0032-4
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N0ee1eb39594e48e9b194f8ce1054d05d schema:issueNumber 4
51 rdf:type schema:PublicationIssue
52 N291e05c63625465684959f813ba946de rdf:first sg:person.01365313467.51
53 rdf:rest N98dd8d000ed44783a79bc4bf735034e8
54 N2ce31007b65f44009ace8cb677b0eae4 schema:name readcube_id
55 schema:value 81f4ead597246ef4e02190616d4503e4b60e45829930655187ddf1ed09cbc90b
56 rdf:type schema:PropertyValue
57 N3e0bea5eb6e84414b0f5525234bdc73d schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N58a8a1ad6c084fa098bea042db6ab580 schema:name dimensions_id
60 schema:value pub.1027280785
61 rdf:type schema:PropertyValue
62 N862ee645153143699d090d6a527f6ac0 schema:name doi
63 schema:value 10.1007/s11888-007-0032-4
64 rdf:type schema:PropertyValue
65 N98dd8d000ed44783a79bc4bf735034e8 rdf:first sg:person.01213127733.91
66 rdf:rest rdf:nil
67 Nca11bb0fd0c54be9b642aeb7a376d6af schema:volumeNumber 3
68 rdf:type schema:PublicationVolume
69 Ncd104c04f89c44b1b3e42f2048d79e04 rdf:first sg:person.01254166215.27
70 rdf:rest N291e05c63625465684959f813ba946de
71 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
72 schema:name Biological Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
75 schema:name Genetics
76 rdf:type schema:DefinedTerm
77 sg:journal.1035689 schema:issn 1556-3790
78 1556-3804
79 schema:name Current Colorectal Cancer Reports
80 rdf:type schema:Periodical
81 sg:person.01213127733.91 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
82 schema:familyName Parmigiani
83 schema:givenName Giovanni
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213127733.91
85 rdf:type schema:Person
86 sg:person.01254166215.27 schema:familyName Chen
87 schema:givenName Sining
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01254166215.27
89 rdf:type schema:Person
90 sg:person.01365313467.51 schema:familyName Euhus
91 schema:givenName David M.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365313467.51
93 rdf:type schema:Person
94 sg:pub.10.1007/bf02053699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039820780
95 https://doi.org/10.1007/bf02053699
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/s10897-006-9035-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036050475
98 https://doi.org/10.1007/s10897-006-9035-6
99 rdf:type schema:CreativeWork
100 sg:pub.10.1038/371075a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024767107
101 https://doi.org/10.1038/371075a0
102 rdf:type schema:CreativeWork
103 sg:pub.10.1038/ng1197-271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042080593
104 https://doi.org/10.1038/ng1197-271
105 rdf:type schema:CreativeWork
106 https://app.dimensions.ai/details/publication/pub.1083350376 schema:CreativeWork
107 https://doi.org/10.1001/jama.296.12.1469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046182520
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1001/jama.296.12.1479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050173803
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1007/bf02053699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039820780
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/0092-8674(93)90330-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1054549998
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/s0016-5085(99)70510-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002202581
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1056/nejm199808203390804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015954847
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1056/nejmoa053493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043340379
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1056/nejmra012242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006436118
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1093/jnci/djh034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029128387
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1093/jnci/djk051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000382638
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1093/jnci/djk077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020822551
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1111/j.1399-0004.2006.00577.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017213225
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1111/j.1399-0004.2007.00746.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028755103
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1126/science.8128251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062652890
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1200/jco.2003.03.189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064203493
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1200/jco.2004.11.084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042174470
138 rdf:type schema:CreativeWork
139 https://doi.org/10.3748/wjg.v12.i31.4943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071364881
140 rdf:type schema:CreativeWork
141 https://doi.org/10.7326/0003-4819-135-8_part_1-200110160-00008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073705143
142 rdf:type schema:CreativeWork
143 https://www.grid.ac/institutes/grid.21107.35 schema:alternateName Johns Hopkins University
144 schema:name Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 550 North Broadway, Suite 1103, 21205, Baltimore, MD, USA
145 Department of Oncology, Johns Hopkins University School of Medicine, 550 North Broadway, Suite 1103, 21205, Baltimore, MD, USA
146 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...