Shubin type Fourier integral operators and evolution equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-02

AUTHORS

Marco Cappiello, René Schulz, Patrik Wahlberg

ABSTRACT

We study the Cauchy problem for an evolution equation of Schrödinger type. The Hamiltonian is the Weyl quantization of a real homogeneous quadratic form with a pseudodifferential perturbation of negative order from Shubin’s class. We prove that the propagator is a Fourier integral operator of Shubin type of order zero. Using results for such operators and corresponding Lagrangian distributions, we study the propagator and the solution, and derive phase space estimates for them. More... »

PAGES

1-21

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11868-019-00288-0

DOI

http://dx.doi.org/10.1007/s11868-019-00288-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112504203


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Turin", 
          "id": "https://www.grid.ac/institutes/grid.7605.4", 
          "name": [
            "Department of Mathematics, University of Torino, Via Carlo Alberto 10, 10123, Turin, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cappiello", 
        "givenName": "Marco", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hannover", 
          "id": "https://www.grid.ac/institutes/grid.9122.8", 
          "name": [
            "Institut f\u00fcr Analysis, Leibniz Universit\u00e4t Hannover, Welfenplatz 1, 30167, Hannover, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schulz", 
        "givenName": "Ren\u00e9", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Linnaeus University", 
          "id": "https://www.grid.ac/institutes/grid.8148.5", 
          "name": [
            "Department of Mathematics, Linn\u00e6us University, 351 95, V\u00e4xj\u00f6, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wahlberg", 
        "givenName": "Patrik", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02572374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013769504", 
          "https://doi.org/10.1007/bf02572374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02572374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013769504", 
          "https://doi.org/10.1007/bf02572374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00605-013-0592-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015881682", 
          "https://doi.org/10.1007/s00605-013-0592-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0085123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021874194", 
          "https://doi.org/10.1007/bfb0085123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11868-015-0143-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024847310", 
          "https://doi.org/10.1007/s11868-015-0143-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aim.2011.10.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033422706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfa.2007.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035869464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00041-014-9384-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036709186", 
          "https://doi.org/10.1007/s00041-014-9384-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfa.2005.12.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040719834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4892459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046397151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03605302.2015.1007145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046960512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2374454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069900849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.201600410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084926139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4099/math1924.4.299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092309027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.5022778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100868396"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-02", 
    "datePublishedReg": "2019-03-02", 
    "description": "We study the Cauchy problem for an evolution equation of Schr\u00f6dinger type. The Hamiltonian is the Weyl quantization of a real homogeneous quadratic form with a pseudodifferential perturbation of negative order from Shubin\u2019s class. We prove that the propagator is a Fourier integral operator of Shubin type of order zero. Using results for such operators and corresponding Lagrangian distributions, we study the propagator and the solution, and derive phase space estimates for them.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11868-019-00288-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136558", 
        "issn": [
          "1662-9981", 
          "1662-999X"
        ], 
        "name": "Journal of Pseudo-Differential Operators and Applications", 
        "type": "Periodical"
      }
    ], 
    "name": "Shubin type Fourier integral operators and evolution equations", 
    "pagination": "1-21", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "21be6d2ee9c77b8fd122aadf1bd5f728006b111b5b2ace0d65569ecb22d0f860"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11868-019-00288-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112504203"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11868-019-00288-0", 
      "https://app.dimensions.ai/details/publication/pub.1112504203"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000350_0000000350/records_77579_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11868-019-00288-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11868-019-00288-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11868-019-00288-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11868-019-00288-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11868-019-00288-0'


 

This table displays all metadata directly associated to this object as RDF triples.

119 TRIPLES      21 PREDICATES      38 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11868-019-00288-0 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N0bb25eb7e86c458e895b56664f5a6fb7
4 schema:citation sg:pub.10.1007/bf02572374
5 sg:pub.10.1007/bfb0085123
6 sg:pub.10.1007/s00041-014-9384-8
7 sg:pub.10.1007/s00605-013-0592-0
8 sg:pub.10.1007/s11868-015-0143-7
9 https://doi.org/10.1002/mana.201600410
10 https://doi.org/10.1016/j.aim.2011.10.018
11 https://doi.org/10.1016/j.jfa.2005.12.017
12 https://doi.org/10.1016/j.jfa.2007.07.007
13 https://doi.org/10.1063/1.4892459
14 https://doi.org/10.1063/1.5022778
15 https://doi.org/10.1080/03605302.2015.1007145
16 https://doi.org/10.2307/2374454
17 https://doi.org/10.4099/math1924.4.299
18 schema:datePublished 2019-03-02
19 schema:datePublishedReg 2019-03-02
20 schema:description We study the Cauchy problem for an evolution equation of Schrödinger type. The Hamiltonian is the Weyl quantization of a real homogeneous quadratic form with a pseudodifferential perturbation of negative order from Shubin’s class. We prove that the propagator is a Fourier integral operator of Shubin type of order zero. Using results for such operators and corresponding Lagrangian distributions, we study the propagator and the solution, and derive phase space estimates for them.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf sg:journal.1136558
25 schema:name Shubin type Fourier integral operators and evolution equations
26 schema:pagination 1-21
27 schema:productId N17593f7cfa704ff18428f5dc409a2a7f
28 N7ca43d7d4b354f579e68115c55255692
29 Nbcd25d373d304890b3243210e27fc9d7
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112504203
31 https://doi.org/10.1007/s11868-019-00288-0
32 schema:sdDatePublished 2019-04-11T10:50
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher Nd1bc467831954068a21c28a7d6b21ded
35 schema:url https://link.springer.com/10.1007%2Fs11868-019-00288-0
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N0bb25eb7e86c458e895b56664f5a6fb7 rdf:first N702dd5ab59d44fc9a087b63f54e63cb0
40 rdf:rest N6c5c612fd72b426a9bf9a39c7dc93198
41 N17593f7cfa704ff18428f5dc409a2a7f schema:name dimensions_id
42 schema:value pub.1112504203
43 rdf:type schema:PropertyValue
44 N6c5c612fd72b426a9bf9a39c7dc93198 rdf:first Nd176d11715d9448581374a99a1cc2f77
45 rdf:rest N9f9f9e4dd0ac4dbdbda7658c98843dc3
46 N702dd5ab59d44fc9a087b63f54e63cb0 schema:affiliation https://www.grid.ac/institutes/grid.7605.4
47 schema:familyName Cappiello
48 schema:givenName Marco
49 rdf:type schema:Person
50 N7ca43d7d4b354f579e68115c55255692 schema:name doi
51 schema:value 10.1007/s11868-019-00288-0
52 rdf:type schema:PropertyValue
53 N9f9f9e4dd0ac4dbdbda7658c98843dc3 rdf:first Nfa68d879cc7849f3a55f09dc89688ef5
54 rdf:rest rdf:nil
55 Nbcd25d373d304890b3243210e27fc9d7 schema:name readcube_id
56 schema:value 21be6d2ee9c77b8fd122aadf1bd5f728006b111b5b2ace0d65569ecb22d0f860
57 rdf:type schema:PropertyValue
58 Nd176d11715d9448581374a99a1cc2f77 schema:affiliation https://www.grid.ac/institutes/grid.9122.8
59 schema:familyName Schulz
60 schema:givenName René
61 rdf:type schema:Person
62 Nd1bc467831954068a21c28a7d6b21ded schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 Nfa68d879cc7849f3a55f09dc89688ef5 schema:affiliation https://www.grid.ac/institutes/grid.8148.5
65 schema:familyName Wahlberg
66 schema:givenName Patrik
67 rdf:type schema:Person
68 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
69 schema:name Mathematical Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
72 schema:name Pure Mathematics
73 rdf:type schema:DefinedTerm
74 sg:journal.1136558 schema:issn 1662-9981
75 1662-999X
76 schema:name Journal of Pseudo-Differential Operators and Applications
77 rdf:type schema:Periodical
78 sg:pub.10.1007/bf02572374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013769504
79 https://doi.org/10.1007/bf02572374
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/bfb0085123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021874194
82 https://doi.org/10.1007/bfb0085123
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/s00041-014-9384-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036709186
85 https://doi.org/10.1007/s00041-014-9384-8
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/s00605-013-0592-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015881682
88 https://doi.org/10.1007/s00605-013-0592-0
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/s11868-015-0143-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024847310
91 https://doi.org/10.1007/s11868-015-0143-7
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1002/mana.201600410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084926139
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.aim.2011.10.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033422706
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.jfa.2005.12.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040719834
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.jfa.2007.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035869464
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1063/1.4892459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046397151
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1063/1.5022778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100868396
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1080/03605302.2015.1007145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046960512
106 rdf:type schema:CreativeWork
107 https://doi.org/10.2307/2374454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069900849
108 rdf:type schema:CreativeWork
109 https://doi.org/10.4099/math1924.4.299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092309027
110 rdf:type schema:CreativeWork
111 https://www.grid.ac/institutes/grid.7605.4 schema:alternateName University of Turin
112 schema:name Department of Mathematics, University of Torino, Via Carlo Alberto 10, 10123, Turin, Italy
113 rdf:type schema:Organization
114 https://www.grid.ac/institutes/grid.8148.5 schema:alternateName Linnaeus University
115 schema:name Department of Mathematics, Linnæus University, 351 95, Växjö, Sweden
116 rdf:type schema:Organization
117 https://www.grid.ac/institutes/grid.9122.8 schema:alternateName University of Hannover
118 schema:name Institut für Analysis, Leibniz Universität Hannover, Welfenplatz 1, 30167, Hannover, Germany
119 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...