Introducing the windowed Fourier frames technique for obtaining the approximate solution of the coupled system of differential equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

M. M. Khader, M. Adel

ABSTRACT

This paper is devoted to introduce an efficient solver using a combination of the symbol of the operator and the windowed Fourier frames (WFFs) of the coupled system of second order ordinary differential equations. The given system has a basic importance in modeling various phenomena like, Cascades and Compartment Analysis, Pond Pollution, Home Heating, Chemostats and Microorganism Culturing, Nutrient Flow in an Aquarium, Biomass Transfer and others. The proposed method reduces the system of differential equations to a system of algebraic equations in the coefficients of WFFs. The introduced method is computer oriented with highly accurate solution. To demonstrate the efficiency of the proposed method, two examples are presented and the results are displayed graphically. Finally, we convert the presented coupled systems of BVPs to a first order system of ODEs to compare the obtained numerical solution with those solutions using the fourth-order Runge–Kutta method (RK4). More... »

PAGES

1-16

References to SciGraph publications

  • 2014-10. Numerical treatment for solving fractional SIRC model and influenza A in COMPUTATIONAL AND APPLIED MATHEMATICS
  • 2011-09. Preconditioners based on windowed Fourier frames applied to elliptic partial differential equations in JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11868-018-0240-5

    DOI

    http://dx.doi.org/10.1007/s11868-018-0240-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1101001534


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Banha University", 
              "id": "https://www.grid.ac/institutes/grid.411660.4", 
              "name": [
                "Department of Mathematics and Statistics, College of Science, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), 11566, Riyadh, Saudi Arabia", 
                "Department of Mathematics, Faculty of Science, Benha University, Benha, Egypt"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Khader", 
            "givenName": "M. M.", 
            "id": "sg:person.07750127403.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07750127403.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cairo University", 
              "id": "https://www.grid.ac/institutes/grid.7776.1", 
              "name": [
                "Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Adel", 
            "givenName": "M.", 
            "id": "sg:person.0627343234.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627343234.16"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0378-4371(00)00255-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005267197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40314-013-0079-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021234596", 
              "https://doi.org/10.1007/s40314-013-0079-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mma.2681", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023392776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4236/am.2015.64058", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024618154"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cnsns.2006.06.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033075973"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apm.2013.06.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045815083"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11868-011-0026-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049148915", 
              "https://doi.org/10.1007/s11868-011-0026-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cnsns.2010.09.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049655817"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00207728508926663", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053474735"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.4024852", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062150170"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03", 
        "datePublishedReg": "2019-03-01", 
        "description": "This paper is devoted to introduce an efficient solver using a combination of the symbol of the operator and the windowed Fourier frames (WFFs) of the coupled system of second order ordinary differential equations. The given system has a basic importance in modeling various phenomena like, Cascades and Compartment Analysis, Pond Pollution, Home Heating, Chemostats and Microorganism Culturing, Nutrient Flow in an Aquarium, Biomass Transfer and others. The proposed method reduces the system of differential equations to a system of algebraic equations in the coefficients of WFFs. The introduced method is computer oriented with highly accurate solution. To demonstrate the efficiency of the proposed method, two examples are presented and the results are displayed graphically. Finally, we convert the presented coupled systems of BVPs to a first order system of ODEs to compare the obtained numerical solution with those solutions using the fourth-order Runge\u2013Kutta method (RK4).", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11868-018-0240-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136558", 
            "issn": [
              "1662-9981", 
              "1662-999X"
            ], 
            "name": "Journal of Pseudo-Differential Operators and Applications", 
            "type": "Periodical"
          }
        ], 
        "name": "Introducing the windowed Fourier frames technique for obtaining the approximate solution of the coupled system of differential equations", 
        "pagination": "1-16", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "ae9133d66b74852131381d8d6d9ad31bd5d416cdbf3ef1e87217a1872f3b2906"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11868-018-0240-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1101001534"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11868-018-0240-5", 
          "https://app.dimensions.ai/details/publication/pub.1101001534"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T14:05", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000493.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s11868-018-0240-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11868-018-0240-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11868-018-0240-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11868-018-0240-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11868-018-0240-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    98 TRIPLES      21 PREDICATES      35 URIs      17 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11868-018-0240-5 schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author N47f8cc6cb380466ba10f9e76291132bc
    4 schema:citation sg:pub.10.1007/s11868-011-0026-5
    5 sg:pub.10.1007/s40314-013-0079-6
    6 https://doi.org/10.1002/mma.2681
    7 https://doi.org/10.1016/j.apm.2013.06.010
    8 https://doi.org/10.1016/j.cnsns.2006.06.006
    9 https://doi.org/10.1016/j.cnsns.2010.09.007
    10 https://doi.org/10.1016/s0378-4371(00)00255-7
    11 https://doi.org/10.1080/00207728508926663
    12 https://doi.org/10.1115/1.4024852
    13 https://doi.org/10.4236/am.2015.64058
    14 schema:datePublished 2019-03
    15 schema:datePublishedReg 2019-03-01
    16 schema:description This paper is devoted to introduce an efficient solver using a combination of the symbol of the operator and the windowed Fourier frames (WFFs) of the coupled system of second order ordinary differential equations. The given system has a basic importance in modeling various phenomena like, Cascades and Compartment Analysis, Pond Pollution, Home Heating, Chemostats and Microorganism Culturing, Nutrient Flow in an Aquarium, Biomass Transfer and others. The proposed method reduces the system of differential equations to a system of algebraic equations in the coefficients of WFFs. The introduced method is computer oriented with highly accurate solution. To demonstrate the efficiency of the proposed method, two examples are presented and the results are displayed graphically. Finally, we convert the presented coupled systems of BVPs to a first order system of ODEs to compare the obtained numerical solution with those solutions using the fourth-order Runge–Kutta method (RK4).
    17 schema:genre research_article
    18 schema:inLanguage en
    19 schema:isAccessibleForFree false
    20 schema:isPartOf sg:journal.1136558
    21 schema:name Introducing the windowed Fourier frames technique for obtaining the approximate solution of the coupled system of differential equations
    22 schema:pagination 1-16
    23 schema:productId N719fd281478f4db284e84e27697c08fa
    24 N95f37a958fc44d43b79c34f4dc1ed8e6
    25 Nde41ca14b3ac4db1b1a9cc6c542a7834
    26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101001534
    27 https://doi.org/10.1007/s11868-018-0240-5
    28 schema:sdDatePublished 2019-04-10T14:05
    29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    30 schema:sdPublisher N5e13c6555eba4522b5769a1ecdb6513d
    31 schema:url http://link.springer.com/10.1007/s11868-018-0240-5
    32 sgo:license sg:explorer/license/
    33 sgo:sdDataset articles
    34 rdf:type schema:ScholarlyArticle
    35 N47f8cc6cb380466ba10f9e76291132bc rdf:first sg:person.07750127403.01
    36 rdf:rest Nbef10908c67c4268b625bfc920fcafbf
    37 N5e13c6555eba4522b5769a1ecdb6513d schema:name Springer Nature - SN SciGraph project
    38 rdf:type schema:Organization
    39 N719fd281478f4db284e84e27697c08fa schema:name readcube_id
    40 schema:value ae9133d66b74852131381d8d6d9ad31bd5d416cdbf3ef1e87217a1872f3b2906
    41 rdf:type schema:PropertyValue
    42 N95f37a958fc44d43b79c34f4dc1ed8e6 schema:name doi
    43 schema:value 10.1007/s11868-018-0240-5
    44 rdf:type schema:PropertyValue
    45 Nbef10908c67c4268b625bfc920fcafbf rdf:first sg:person.0627343234.16
    46 rdf:rest rdf:nil
    47 Nde41ca14b3ac4db1b1a9cc6c542a7834 schema:name dimensions_id
    48 schema:value pub.1101001534
    49 rdf:type schema:PropertyValue
    50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    51 schema:name Mathematical Sciences
    52 rdf:type schema:DefinedTerm
    53 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    54 schema:name Numerical and Computational Mathematics
    55 rdf:type schema:DefinedTerm
    56 sg:journal.1136558 schema:issn 1662-9981
    57 1662-999X
    58 schema:name Journal of Pseudo-Differential Operators and Applications
    59 rdf:type schema:Periodical
    60 sg:person.0627343234.16 schema:affiliation https://www.grid.ac/institutes/grid.7776.1
    61 schema:familyName Adel
    62 schema:givenName M.
    63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627343234.16
    64 rdf:type schema:Person
    65 sg:person.07750127403.01 schema:affiliation https://www.grid.ac/institutes/grid.411660.4
    66 schema:familyName Khader
    67 schema:givenName M. M.
    68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07750127403.01
    69 rdf:type schema:Person
    70 sg:pub.10.1007/s11868-011-0026-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049148915
    71 https://doi.org/10.1007/s11868-011-0026-5
    72 rdf:type schema:CreativeWork
    73 sg:pub.10.1007/s40314-013-0079-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021234596
    74 https://doi.org/10.1007/s40314-013-0079-6
    75 rdf:type schema:CreativeWork
    76 https://doi.org/10.1002/mma.2681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023392776
    77 rdf:type schema:CreativeWork
    78 https://doi.org/10.1016/j.apm.2013.06.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045815083
    79 rdf:type schema:CreativeWork
    80 https://doi.org/10.1016/j.cnsns.2006.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033075973
    81 rdf:type schema:CreativeWork
    82 https://doi.org/10.1016/j.cnsns.2010.09.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049655817
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1016/s0378-4371(00)00255-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005267197
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1080/00207728508926663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053474735
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1115/1.4024852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062150170
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.4236/am.2015.64058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024618154
    91 rdf:type schema:CreativeWork
    92 https://www.grid.ac/institutes/grid.411660.4 schema:alternateName Banha University
    93 schema:name Department of Mathematics and Statistics, College of Science, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), 11566, Riyadh, Saudi Arabia
    94 Department of Mathematics, Faculty of Science, Benha University, Benha, Egypt
    95 rdf:type schema:Organization
    96 https://www.grid.ac/institutes/grid.7776.1 schema:alternateName Cairo University
    97 schema:name Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt
    98 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...