A generalized Levi condition for weakly hyperbolic Cauchy problems with coefficients low regular in time and smooth in space View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-03

AUTHORS

Daniel Lorenz, Michael Reissig

ABSTRACT

We consider the Cauchy problem for weakly hyperbolic m-th order partial differential equations with coefficients low-regular in time and smooth in space. It is well-known that in general one has to impose Levi conditions to get C∞ or Gevrey well-posedness even if the coefficients are smooth. We use moduli of continuity to describe the regularity of the coefficients with respect to time, weight sequences for the characterization of their regularity with respect to space and weight functions to define the solution spaces. Furthermore, we propose a generalized Levi condition that models the influence of multiple characteristics more freely. We establish sufficient conditions for the well-posedness of the Cauchy problem, that link the Levi condition as well as the modulus of continuity and the weight sequence of the coefficients to the weight function of the solution space. Additionally, we obtain that the influences of the Levi condition and the low regularity of coefficients on the weight function of the solution space are independent of each other. More... »

PAGES

1-42

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11868-018-0236-1

DOI

http://dx.doi.org/10.1007/s11868-018-0236-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100481062


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Freiberg University Of Mining And Technology", 
          "id": "https://www.grid.ac/institutes/grid.6862.a", 
          "name": [
            "Institute of Applied Analysis, Faculty of Mathematics and Computer Science, TU Bergakademie Freiberg, Pr\u00fcferstr. 9, 09599, Freiberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lorenz", 
        "givenName": "Daniel", 
        "id": "sg:person.010112732422.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010112732422.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Freiberg University Of Mining And Technology", 
          "id": "https://www.grid.ac/institutes/grid.6862.a", 
          "name": [
            "Institute of Applied Analysis, Faculty of Mathematics and Computer Science, TU Bergakademie Freiberg, Pr\u00fcferstr. 9, 09599, Freiberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reissig", 
        "givenName": "Michael", 
        "id": "sg:person.016703673573.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016703673573.11"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0022-0396(75)90038-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003930998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-49938-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025664356", 
          "https://doi.org/10.1007/978-3-540-49938-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-49938-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025664356", 
          "https://doi.org/10.1007/978-3-540-49938-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01076032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039712576", 
          "https://doi.org/10.1007/bf01076032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01076032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039712576", 
          "https://doi.org/10.1007/bf01076032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.19971830117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043779500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01776846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049664724", 
          "https://doi.org/10.1007/bf01776846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01776846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049664724", 
          "https://doi.org/10.1007/bf01776846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2977/prims/1145476338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070934278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/kjm/1250521482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083509517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11868-017-0203-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084519886", 
          "https://doi.org/10.1007/s11868-017-0203-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11868-017-0203-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084519886", 
          "https://doi.org/10.1007/s11868-017-0203-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02826084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085935864", 
          "https://doi.org/10.1007/bf02826084"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "We consider the Cauchy problem for weakly hyperbolic m-th order partial differential equations with coefficients low-regular in time and smooth in space. It is well-known that in general one has to impose Levi conditions to get C\u221e or Gevrey well-posedness even if the coefficients are smooth. We use moduli of continuity to describe the regularity of the coefficients with respect to time, weight sequences for the characterization of their regularity with respect to space and weight functions to define the solution spaces. Furthermore, we propose a generalized Levi condition that models the influence of multiple characteristics more freely. We establish sufficient conditions for the well-posedness of the Cauchy problem, that link the Levi condition as well as the modulus of continuity and the weight sequence of the coefficients to the weight function of the solution space. Additionally, we obtain that the influences of the Levi condition and the low regularity of coefficients on the weight function of the solution space are independent of each other.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11868-018-0236-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136558", 
        "issn": [
          "1662-9981", 
          "1662-999X"
        ], 
        "name": "Journal of Pseudo-Differential Operators and Applications", 
        "type": "Periodical"
      }
    ], 
    "name": "A generalized Levi condition for weakly hyperbolic Cauchy problems with coefficients low regular in time and smooth in space", 
    "pagination": "1-42", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "80b94239ca8899839ed6af80eab597476fc232d30a87b33cd043c021cbec3ac1"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11868-018-0236-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100481062"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11868-018-0236-1", 
      "https://app.dimensions.ai/details/publication/pub.1100481062"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000493.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s11868-018-0236-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11868-018-0236-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11868-018-0236-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11868-018-0236-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11868-018-0236-1'


 

This table displays all metadata directly associated to this object as RDF triples.

94 TRIPLES      21 PREDICATES      34 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11868-018-0236-1 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N840a946f93ab49559aa739fb4fda31f5
4 schema:citation sg:pub.10.1007/978-3-540-49938-1
5 sg:pub.10.1007/bf01076032
6 sg:pub.10.1007/bf01776846
7 sg:pub.10.1007/bf02826084
8 sg:pub.10.1007/s11868-017-0203-2
9 https://doi.org/10.1002/mana.19971830117
10 https://doi.org/10.1016/0022-0396(75)90038-8
11 https://doi.org/10.1215/kjm/1250521482
12 https://doi.org/10.2977/prims/1145476338
13 schema:datePublished 2019-03
14 schema:datePublishedReg 2019-03-01
15 schema:description We consider the Cauchy problem for weakly hyperbolic m-th order partial differential equations with coefficients low-regular in time and smooth in space. It is well-known that in general one has to impose Levi conditions to get C∞ or Gevrey well-posedness even if the coefficients are smooth. We use moduli of continuity to describe the regularity of the coefficients with respect to time, weight sequences for the characterization of their regularity with respect to space and weight functions to define the solution spaces. Furthermore, we propose a generalized Levi condition that models the influence of multiple characteristics more freely. We establish sufficient conditions for the well-posedness of the Cauchy problem, that link the Levi condition as well as the modulus of continuity and the weight sequence of the coefficients to the weight function of the solution space. Additionally, we obtain that the influences of the Levi condition and the low regularity of coefficients on the weight function of the solution space are independent of each other.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree true
19 schema:isPartOf sg:journal.1136558
20 schema:name A generalized Levi condition for weakly hyperbolic Cauchy problems with coefficients low regular in time and smooth in space
21 schema:pagination 1-42
22 schema:productId N02123de82e2e4f97b6f95736dc1be3d9
23 Nb600f30a966049f388a2f919e9b4d6e1
24 Ndfd781fffbd74a6b95cd1ad5a01eabe9
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100481062
26 https://doi.org/10.1007/s11868-018-0236-1
27 schema:sdDatePublished 2019-04-10T19:04
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N54583029d7944c528b80123feb4b5ddc
30 schema:url http://link.springer.com/10.1007/s11868-018-0236-1
31 sgo:license sg:explorer/license/
32 sgo:sdDataset articles
33 rdf:type schema:ScholarlyArticle
34 N02123de82e2e4f97b6f95736dc1be3d9 schema:name dimensions_id
35 schema:value pub.1100481062
36 rdf:type schema:PropertyValue
37 N54583029d7944c528b80123feb4b5ddc schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 N689b6f6e15954b1fb8b53d214acf4230 rdf:first sg:person.016703673573.11
40 rdf:rest rdf:nil
41 N840a946f93ab49559aa739fb4fda31f5 rdf:first sg:person.010112732422.63
42 rdf:rest N689b6f6e15954b1fb8b53d214acf4230
43 Nb600f30a966049f388a2f919e9b4d6e1 schema:name doi
44 schema:value 10.1007/s11868-018-0236-1
45 rdf:type schema:PropertyValue
46 Ndfd781fffbd74a6b95cd1ad5a01eabe9 schema:name readcube_id
47 schema:value 80b94239ca8899839ed6af80eab597476fc232d30a87b33cd043c021cbec3ac1
48 rdf:type schema:PropertyValue
49 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
50 schema:name Mathematical Sciences
51 rdf:type schema:DefinedTerm
52 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
53 schema:name Pure Mathematics
54 rdf:type schema:DefinedTerm
55 sg:journal.1136558 schema:issn 1662-9981
56 1662-999X
57 schema:name Journal of Pseudo-Differential Operators and Applications
58 rdf:type schema:Periodical
59 sg:person.010112732422.63 schema:affiliation https://www.grid.ac/institutes/grid.6862.a
60 schema:familyName Lorenz
61 schema:givenName Daniel
62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010112732422.63
63 rdf:type schema:Person
64 sg:person.016703673573.11 schema:affiliation https://www.grid.ac/institutes/grid.6862.a
65 schema:familyName Reissig
66 schema:givenName Michael
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016703673573.11
68 rdf:type schema:Person
69 sg:pub.10.1007/978-3-540-49938-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025664356
70 https://doi.org/10.1007/978-3-540-49938-1
71 rdf:type schema:CreativeWork
72 sg:pub.10.1007/bf01076032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039712576
73 https://doi.org/10.1007/bf01076032
74 rdf:type schema:CreativeWork
75 sg:pub.10.1007/bf01776846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049664724
76 https://doi.org/10.1007/bf01776846
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/bf02826084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085935864
79 https://doi.org/10.1007/bf02826084
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/s11868-017-0203-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084519886
82 https://doi.org/10.1007/s11868-017-0203-2
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1002/mana.19971830117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043779500
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/0022-0396(75)90038-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003930998
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1215/kjm/1250521482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083509517
89 rdf:type schema:CreativeWork
90 https://doi.org/10.2977/prims/1145476338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070934278
91 rdf:type schema:CreativeWork
92 https://www.grid.ac/institutes/grid.6862.a schema:alternateName Freiberg University Of Mining And Technology
93 schema:name Institute of Applied Analysis, Faculty of Mathematics and Computer Science, TU Bergakademie Freiberg, Prüferstr. 9, 09599, Freiberg, Germany
94 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...