On the images of Dunkl–Sobolev spaces under the Schrödinger semigroup associated to Dunkl operators View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

C. Sivaramakrishnan, D. Sukumar, D. Venku Naidu

ABSTRACT

In this article, we consider the Schrödinger semigroup related to the Dunkl–Laplacian Δμ (associated to finite reflection group G) on Rn. We characterize the image of L2(Rn,eu2hμ(u)du) under the Schrödinger semigroup as a reproducing kernel Hilbert space. We define Dunkl–Sobolev space in L2(Rn,eu2hμ(u)du) and characterize it’s image under the Schrödinger semigroup associated to G=Z2n as a reproducing kernel Hilbert space up to equivalence of norms. Also we provide similar results for Schrödinger semigroup associated to Dunkl–Hermite operator. More... »

PAGES

1-28

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11868-017-0233-9

DOI

http://dx.doi.org/10.1007/s11868-017-0233-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1095858940


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Hyderabad", 
          "id": "https://www.grid.ac/institutes/grid.459612.d", 
          "name": [
            "Department of Mathematics, Indian Institute of Technology Hyderabad, 502285, Hyderabad, Telangana, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sivaramakrishnan", 
        "givenName": "C.", 
        "id": "sg:person.016343010126.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016343010126.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Hyderabad", 
          "id": "https://www.grid.ac/institutes/grid.459612.d", 
          "name": [
            "Department of Mathematics, Indian Institute of Technology Hyderabad, 502285, Hyderabad, Telangana, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sukumar", 
        "givenName": "D.", 
        "id": "sg:person.07560541130.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07560541130.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Hyderabad", 
          "id": "https://www.grid.ac/institutes/grid.459612.d", 
          "name": [
            "Department of Mathematics, Indian Institute of Technology Hyderabad, 502285, Hyderabad, Telangana, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Naidu", 
        "givenName": "D. Venku", 
        "id": "sg:person.016520416137.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016520416137.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jfa.2004.03.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004419877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfa.2005.03.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013272641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2009.01.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022690365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8522-5_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023289876", 
          "https://doi.org/10.1007/978-3-0348-8522-5_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8522-5_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023289876", 
          "https://doi.org/10.1007/978-3-0348-8522-5_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1989-0951883-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023462704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160140303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027506402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.201100233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034878142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00605-012-0424-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037146053", 
          "https://doi.org/10.1007/s00605-012-0424-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00208-005-0718-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039209360", 
          "https://doi.org/10.1007/s00208-005-0718-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jfan.1996.2954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046980102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02807401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047010998", 
          "https://doi.org/10.1007/bf02807401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02807401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047010998", 
          "https://doi.org/10.1007/bf02807401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00209-010-0711-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050959086", 
          "https://doi.org/10.1007/s00209-010-0711-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0515015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062847581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s021902570900363x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062987069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-99-09813-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064420529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/pjm.2004.214.379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069071336"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "In this article, we consider the Schr\u00f6dinger semigroup related to the Dunkl\u2013Laplacian \u0394\u03bc (associated to finite reflection group G) on Rn. We characterize the image of L2(Rn,eu2h\u03bc(u)du) under the Schr\u00f6dinger semigroup as a reproducing kernel Hilbert space. We define Dunkl\u2013Sobolev space in L2(Rn,eu2h\u03bc(u)du) and characterize it\u2019s image under the Schr\u00f6dinger semigroup associated to G=Z2n as a reproducing kernel Hilbert space up to equivalence of norms. Also we provide similar results for Schr\u00f6dinger semigroup associated to Dunkl\u2013Hermite operator.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11868-017-0233-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136558", 
        "issn": [
          "1662-9981", 
          "1662-999X"
        ], 
        "name": "Journal of Pseudo-Differential Operators and Applications", 
        "type": "Periodical"
      }
    ], 
    "name": "On the images of Dunkl\u2013Sobolev spaces under the Schr\u00f6dinger semigroup associated to Dunkl operators", 
    "pagination": "1-28", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "990c984b6da2932e8e7fea8ba4af7e58c3cb47465c4e43e668448d9ea844f86d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11868-017-0233-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1095858940"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11868-017-0233-9", 
      "https://app.dimensions.ai/details/publication/pub.1095858940"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000484.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s11868-017-0233-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11868-017-0233-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11868-017-0233-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11868-017-0233-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11868-017-0233-9'


 

This table displays all metadata directly associated to this object as RDF triples.

122 TRIPLES      21 PREDICATES      41 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11868-017-0233-9 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N8b69b6b131d94c60a59f6864ae2a7767
4 schema:citation sg:pub.10.1007/978-3-0348-8522-5_15
5 sg:pub.10.1007/bf02807401
6 sg:pub.10.1007/s00208-005-0718-3
7 sg:pub.10.1007/s00209-010-0711-8
8 sg:pub.10.1007/s00605-012-0424-7
9 https://doi.org/10.1002/cpa.3160140303
10 https://doi.org/10.1002/mana.201100233
11 https://doi.org/10.1006/jfan.1996.2954
12 https://doi.org/10.1016/j.jfa.2004.03.018
13 https://doi.org/10.1016/j.jfa.2005.03.019
14 https://doi.org/10.1016/j.jmaa.2009.01.021
15 https://doi.org/10.1090/s0002-9947-1989-0951883-8
16 https://doi.org/10.1137/0515015
17 https://doi.org/10.1142/s021902570900363x
18 https://doi.org/10.1215/s0012-7094-99-09813-7
19 https://doi.org/10.2140/pjm.2004.214.379
20 schema:datePublished 2019-03
21 schema:datePublishedReg 2019-03-01
22 schema:description In this article, we consider the Schrödinger semigroup related to the Dunkl–Laplacian Δμ (associated to finite reflection group G) on Rn. We characterize the image of L2(Rn,eu2hμ(u)du) under the Schrödinger semigroup as a reproducing kernel Hilbert space. We define Dunkl–Sobolev space in L2(Rn,eu2hμ(u)du) and characterize it’s image under the Schrödinger semigroup associated to G=Z2n as a reproducing kernel Hilbert space up to equivalence of norms. Also we provide similar results for Schrödinger semigroup associated to Dunkl–Hermite operator.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf sg:journal.1136558
27 schema:name On the images of Dunkl–Sobolev spaces under the Schrödinger semigroup associated to Dunkl operators
28 schema:pagination 1-28
29 schema:productId N5136062634f94494a71047bef789a254
30 N5efd9762b4114f5f971c6cbb716c9a4e
31 Nee737bc34c40484cb92a533f9693c064
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095858940
33 https://doi.org/10.1007/s11868-017-0233-9
34 schema:sdDatePublished 2019-04-10T14:54
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N680013be6b5d4ebca5b32bade9a77fb0
37 schema:url http://link.springer.com/10.1007/s11868-017-0233-9
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N5136062634f94494a71047bef789a254 schema:name dimensions_id
42 schema:value pub.1095858940
43 rdf:type schema:PropertyValue
44 N5efd9762b4114f5f971c6cbb716c9a4e schema:name readcube_id
45 schema:value 990c984b6da2932e8e7fea8ba4af7e58c3cb47465c4e43e668448d9ea844f86d
46 rdf:type schema:PropertyValue
47 N680013be6b5d4ebca5b32bade9a77fb0 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N8b69b6b131d94c60a59f6864ae2a7767 rdf:first sg:person.016343010126.05
50 rdf:rest N97dee6b5eb42409e8b634f2215419763
51 N90f56fcede7544f2b2bd6c4637a8ac9c rdf:first sg:person.016520416137.51
52 rdf:rest rdf:nil
53 N97dee6b5eb42409e8b634f2215419763 rdf:first sg:person.07560541130.08
54 rdf:rest N90f56fcede7544f2b2bd6c4637a8ac9c
55 Nee737bc34c40484cb92a533f9693c064 schema:name doi
56 schema:value 10.1007/s11868-017-0233-9
57 rdf:type schema:PropertyValue
58 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
59 schema:name Information and Computing Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
62 schema:name Artificial Intelligence and Image Processing
63 rdf:type schema:DefinedTerm
64 sg:journal.1136558 schema:issn 1662-9981
65 1662-999X
66 schema:name Journal of Pseudo-Differential Operators and Applications
67 rdf:type schema:Periodical
68 sg:person.016343010126.05 schema:affiliation https://www.grid.ac/institutes/grid.459612.d
69 schema:familyName Sivaramakrishnan
70 schema:givenName C.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016343010126.05
72 rdf:type schema:Person
73 sg:person.016520416137.51 schema:affiliation https://www.grid.ac/institutes/grid.459612.d
74 schema:familyName Naidu
75 schema:givenName D. Venku
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016520416137.51
77 rdf:type schema:Person
78 sg:person.07560541130.08 schema:affiliation https://www.grid.ac/institutes/grid.459612.d
79 schema:familyName Sukumar
80 schema:givenName D.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07560541130.08
82 rdf:type schema:Person
83 sg:pub.10.1007/978-3-0348-8522-5_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023289876
84 https://doi.org/10.1007/978-3-0348-8522-5_15
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/bf02807401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047010998
87 https://doi.org/10.1007/bf02807401
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/s00208-005-0718-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039209360
90 https://doi.org/10.1007/s00208-005-0718-3
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/s00209-010-0711-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050959086
93 https://doi.org/10.1007/s00209-010-0711-8
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/s00605-012-0424-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037146053
96 https://doi.org/10.1007/s00605-012-0424-7
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1002/cpa.3160140303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027506402
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1002/mana.201100233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034878142
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1006/jfan.1996.2954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046980102
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.jfa.2004.03.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004419877
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.jfa.2005.03.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013272641
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.jmaa.2009.01.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022690365
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1090/s0002-9947-1989-0951883-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023462704
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1137/0515015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062847581
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1142/s021902570900363x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062987069
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1215/s0012-7094-99-09813-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064420529
117 rdf:type schema:CreativeWork
118 https://doi.org/10.2140/pjm.2004.214.379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069071336
119 rdf:type schema:CreativeWork
120 https://www.grid.ac/institutes/grid.459612.d schema:alternateName Indian Institute of Technology Hyderabad
121 schema:name Department of Mathematics, Indian Institute of Technology Hyderabad, 502285, Hyderabad, Telangana, India
122 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...