A method for solving ill-posed nonlocal problem for the elliptic equation with data on the whole boundary View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Tynysbek Sh. Kal’menov, Berikbol T. Torebek

ABSTRACT

In this paper a nonlocal problem for the elliptic equation in a cylindrical domain is considered. It is shown that this problem is ill-posed as well as the Cauchy problem for the Laplace equation. The method of spectral expansion in eigenfunctions of the nonlocal problem for equations with involution establishes a criterion of the strong solvability of the considered nonlocal problem. It is shown that the ill-posedness of the nonlocal problem is equivalent to the existence of an isolated point of the continuous spectrum for a nonself-adjoint operator with involution. More... »

PAGES

1-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11868-017-0231-y

DOI

http://dx.doi.org/10.1007/s11868-017-0231-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092819700


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Mathematics and Mathematical Modeling", 
          "id": "https://www.grid.ac/institutes/grid.473156.2", 
          "name": [
            "Department of Differential Equations, Institute of Mathematics and Mathematical Modeling, Pushkin Street 125, 050010, Almaty, Kazakhstan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kal\u2019menov", 
        "givenName": "Tynysbek Sh.", 
        "id": "sg:person.016412105130.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016412105130.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Al-Farabi Kazakh National University", 
          "id": "https://www.grid.ac/institutes/grid.77184.3d", 
          "name": [
            "Department of Differential Equations, Institute of Mathematics and Mathematical Modeling, Pushkin Street 125, 050010, Almaty, Kazakhstan", 
            "Al-Farabi Kazakh National University, Al-Farabi Ave., 050040, Almaty, Kazakhstan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Torebek", 
        "givenName": "Berikbol T.", 
        "id": "sg:person.015330541545.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015330541545.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0012266109100085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006444536", 
          "https://doi.org/10.1134/s0012266109100085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apnum.2015.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018739134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2007.05.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032447468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/jiip-2016-0003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037989923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1064562407030118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039710214", 
          "https://doi.org/10.1134/s1064562407030118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rm1979v034n05abeh003901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058194522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/1860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099043477"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "In this paper a nonlocal problem for the elliptic equation in a cylindrical domain is considered. It is shown that this problem is ill-posed as well as the Cauchy problem for the Laplace equation. The method of spectral expansion in eigenfunctions of the nonlocal problem for equations with involution establishes a criterion of the strong solvability of the considered nonlocal problem. It is shown that the ill-posedness of the nonlocal problem is equivalent to the existence of an isolated point of the continuous spectrum for a nonself-adjoint operator with involution.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11868-017-0231-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136558", 
        "issn": [
          "1662-9981", 
          "1662-999X"
        ], 
        "name": "Journal of Pseudo-Differential Operators and Applications", 
        "type": "Periodical"
      }
    ], 
    "name": "A method for solving ill-posed nonlocal problem for the elliptic equation with data on the whole boundary", 
    "pagination": "1-9", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a9e4eab1c8eddb66394a7d7b6f134b370552510291f2bc902038ac501d74dac5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11868-017-0231-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092819700"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11868-017-0231-y", 
      "https://app.dimensions.ai/details/publication/pub.1092819700"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000484.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s11868-017-0231-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11868-017-0231-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11868-017-0231-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11868-017-0231-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11868-017-0231-y'


 

This table displays all metadata directly associated to this object as RDF triples.

89 TRIPLES      21 PREDICATES      32 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11868-017-0231-y schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nf4d65630c03042508746fa0fb0a24a97
4 schema:citation sg:pub.10.1134/s0012266109100085
5 sg:pub.10.1134/s1064562407030118
6 https://doi.org/10.1016/j.apnum.2015.02.003
7 https://doi.org/10.1016/j.jmaa.2007.05.040
8 https://doi.org/10.1070/rm1979v034n05abeh003901
9 https://doi.org/10.1142/1860
10 https://doi.org/10.1515/jiip-2016-0003
11 schema:datePublished 2019-03
12 schema:datePublishedReg 2019-03-01
13 schema:description In this paper a nonlocal problem for the elliptic equation in a cylindrical domain is considered. It is shown that this problem is ill-posed as well as the Cauchy problem for the Laplace equation. The method of spectral expansion in eigenfunctions of the nonlocal problem for equations with involution establishes a criterion of the strong solvability of the considered nonlocal problem. It is shown that the ill-posedness of the nonlocal problem is equivalent to the existence of an isolated point of the continuous spectrum for a nonself-adjoint operator with involution.
14 schema:genre research_article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf sg:journal.1136558
18 schema:name A method for solving ill-posed nonlocal problem for the elliptic equation with data on the whole boundary
19 schema:pagination 1-9
20 schema:productId N6cd00a02d69f477e9f3b4ed7767644e0
21 N80bb4ede41a34f62a2352e991b09ba9b
22 Nc78d68833b1d458783b966625886f092
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092819700
24 https://doi.org/10.1007/s11868-017-0231-y
25 schema:sdDatePublished 2019-04-10T14:02
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher Ndc96e4b03420436e819b109fac128f78
28 schema:url http://link.springer.com/10.1007/s11868-017-0231-y
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N6cd00a02d69f477e9f3b4ed7767644e0 schema:name readcube_id
33 schema:value a9e4eab1c8eddb66394a7d7b6f134b370552510291f2bc902038ac501d74dac5
34 rdf:type schema:PropertyValue
35 N80bb4ede41a34f62a2352e991b09ba9b schema:name doi
36 schema:value 10.1007/s11868-017-0231-y
37 rdf:type schema:PropertyValue
38 Nc78d68833b1d458783b966625886f092 schema:name dimensions_id
39 schema:value pub.1092819700
40 rdf:type schema:PropertyValue
41 Nca6ffe88741e44df9c6181fae669f81a rdf:first sg:person.015330541545.83
42 rdf:rest rdf:nil
43 Ndc96e4b03420436e819b109fac128f78 schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 Nf4d65630c03042508746fa0fb0a24a97 rdf:first sg:person.016412105130.40
46 rdf:rest Nca6ffe88741e44df9c6181fae669f81a
47 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
48 schema:name Mathematical Sciences
49 rdf:type schema:DefinedTerm
50 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
51 schema:name Pure Mathematics
52 rdf:type schema:DefinedTerm
53 sg:journal.1136558 schema:issn 1662-9981
54 1662-999X
55 schema:name Journal of Pseudo-Differential Operators and Applications
56 rdf:type schema:Periodical
57 sg:person.015330541545.83 schema:affiliation https://www.grid.ac/institutes/grid.77184.3d
58 schema:familyName Torebek
59 schema:givenName Berikbol T.
60 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015330541545.83
61 rdf:type schema:Person
62 sg:person.016412105130.40 schema:affiliation https://www.grid.ac/institutes/grid.473156.2
63 schema:familyName Kal’menov
64 schema:givenName Tynysbek Sh.
65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016412105130.40
66 rdf:type schema:Person
67 sg:pub.10.1134/s0012266109100085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006444536
68 https://doi.org/10.1134/s0012266109100085
69 rdf:type schema:CreativeWork
70 sg:pub.10.1134/s1064562407030118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039710214
71 https://doi.org/10.1134/s1064562407030118
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1016/j.apnum.2015.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018739134
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1016/j.jmaa.2007.05.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032447468
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1070/rm1979v034n05abeh003901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058194522
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1142/1860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099043477
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1515/jiip-2016-0003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037989923
82 rdf:type schema:CreativeWork
83 https://www.grid.ac/institutes/grid.473156.2 schema:alternateName Institute of Mathematics and Mathematical Modeling
84 schema:name Department of Differential Equations, Institute of Mathematics and Mathematical Modeling, Pushkin Street 125, 050010, Almaty, Kazakhstan
85 rdf:type schema:Organization
86 https://www.grid.ac/institutes/grid.77184.3d schema:alternateName Al-Farabi Kazakh National University
87 schema:name Al-Farabi Kazakh National University, Al-Farabi Ave., 050040, Almaty, Kazakhstan
88 Department of Differential Equations, Institute of Mathematics and Mathematical Modeling, Pushkin Street 125, 050010, Almaty, Kazakhstan
89 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...