The dynamical hierarchy for Roelcke precompact Polish groups View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-09

AUTHORS

Tomás Ibarlucía

ABSTRACT

We study several distinguished function algebras on a Polish group G, under the assumption that G is Roelcke precompact. We do this by means of the model-theoretic translation initiated by Ben Yaacov and Tsankov: we investigate the dynamics of No-categorical metric structures under the action of their automorphism group. We show that, in this context, every strongly uniformly continuous function (in particular, every Asplund function) is weakly almost periodic. We also point out the correspondence between tame functions and NIP formulas, deducing that the isometry group of the Urysohn sphere is Tame ∩ UC-trivial. More... »

PAGES

965-1009

Journal

TITLE

Israel Journal of Mathematics

ISSUE

2

VOLUME

215

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11856-016-1399-1

DOI

http://dx.doi.org/10.1007/s11856-016-1399-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005014114


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Camille Jordan Institute", 
          "id": "https://www.grid.ac/institutes/grid.493248.0", 
          "name": [
            "Universit\u00e9 de Lyon Universit\u00e9 Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, 43 blvd. du 11 novembre 1918, 69622, Villeurbanne Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ibarluc\u00eda", 
        "givenName": "Tom\u00e1s", 
        "id": "sg:person.011770305357.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011770305357.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4614-6406-8_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001572489", 
          "https://doi.org/10.1007/978-1-4614-6406-8_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511735219.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002774960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002330010076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013156619", 
          "https://doi.org/10.1007/s002330010076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/jlms/s2-45.2.377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015238857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/plms/s3-29.2.331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017483779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/jsl.2014.80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021988724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2178/jsl/1286198151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039074069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0003-4843(71)90015-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040850534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.topol.2006.02.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042261943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.topol.2007.08.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044016976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2586800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047887382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-98-02329-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048355454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00208-007-0097-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050289672", 
          "https://doi.org/10.1007/s00208-007-0097-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00208-007-0097-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050289672", 
          "https://doi.org/10.1007/s00208-007-0097-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-10-04837-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059335068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-2012-05549-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059335670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2373913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069900412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/cm104-2-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072181750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/cm105-2-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072181780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/cm110-2-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072181901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/fm194-1-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072183537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/fm201-1-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072183621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/fm231-1-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072184057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9781107415133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098679603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511735264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098709860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9781139015417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098732088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-4090-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705759", 
          "https://doi.org/10.1007/978-1-4757-4090-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-4090-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705759", 
          "https://doi.org/10.1007/978-1-4757-4090-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-09", 
    "datePublishedReg": "2016-09-01", 
    "description": "We study several distinguished function algebras on a Polish group G, under the assumption that G is Roelcke precompact. We do this by means of the model-theoretic translation initiated by Ben Yaacov and Tsankov: we investigate the dynamics of No-categorical metric structures under the action of their automorphism group. We show that, in this context, every strongly uniformly continuous function (in particular, every Asplund function) is weakly almost periodic. We also point out the correspondence between tame functions and NIP formulas, deducing that the isometry group of the Urysohn sphere is Tame \u2229 UC-trivial.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11856-016-1399-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136632", 
        "issn": [
          "0021-2172", 
          "1565-8511"
        ], 
        "name": "Israel Journal of Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "215"
      }
    ], 
    "name": "The dynamical hierarchy for Roelcke precompact Polish groups", 
    "pagination": "965-1009", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "17e49321a7e84c37f1fcfbf32f862cabebec1cdb057a6a9d598a4da711ea0003"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11856-016-1399-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005014114"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11856-016-1399-1", 
      "https://app.dimensions.ai/details/publication/pub.1005014114"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87106_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11856-016-1399-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11856-016-1399-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11856-016-1399-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11856-016-1399-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11856-016-1399-1'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11856-016-1399-1 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nf07b74f313b94861ad4a4c7dad2cd264
4 schema:citation sg:pub.10.1007/978-1-4614-6406-8_6
5 sg:pub.10.1007/978-1-4757-4090-5
6 sg:pub.10.1007/s00208-007-0097-z
7 sg:pub.10.1007/s002330010076
8 https://doi.org/10.1016/0003-4843(71)90015-5
9 https://doi.org/10.1016/j.topol.2006.02.010
10 https://doi.org/10.1016/j.topol.2007.08.023
11 https://doi.org/10.1017/cbo9780511735219.011
12 https://doi.org/10.1017/cbo9780511735264
13 https://doi.org/10.1017/cbo9781107415133
14 https://doi.org/10.1017/cbo9781139015417
15 https://doi.org/10.1017/jsl.2014.80
16 https://doi.org/10.1090/s0002-9947-10-04837-3
17 https://doi.org/10.1090/s0002-9947-2012-05549-8
18 https://doi.org/10.1090/s0002-9947-98-02329-0
19 https://doi.org/10.1112/jlms/s2-45.2.377
20 https://doi.org/10.1112/plms/s3-29.2.331
21 https://doi.org/10.2178/jsl/1286198151
22 https://doi.org/10.2307/2373913
23 https://doi.org/10.2307/2586800
24 https://doi.org/10.4064/cm104-2-5
25 https://doi.org/10.4064/cm105-2-9
26 https://doi.org/10.4064/cm110-2-5
27 https://doi.org/10.4064/fm194-1-4
28 https://doi.org/10.4064/fm201-1-1
29 https://doi.org/10.4064/fm231-1-5
30 schema:datePublished 2016-09
31 schema:datePublishedReg 2016-09-01
32 schema:description We study several distinguished function algebras on a Polish group G, under the assumption that G is Roelcke precompact. We do this by means of the model-theoretic translation initiated by Ben Yaacov and Tsankov: we investigate the dynamics of No-categorical metric structures under the action of their automorphism group. We show that, in this context, every strongly uniformly continuous function (in particular, every Asplund function) is weakly almost periodic. We also point out the correspondence between tame functions and NIP formulas, deducing that the isometry group of the Urysohn sphere is Tame ∩ UC-trivial.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N1c3a276d4b914d7fbcafb48be2b20dbe
37 N4d7c1e5d51d248f3b2af39b46c7a1c89
38 sg:journal.1136632
39 schema:name The dynamical hierarchy for Roelcke precompact Polish groups
40 schema:pagination 965-1009
41 schema:productId Ncf374031671a4c1aac78acf5a5231e76
42 Ne73123881d2749d9baf7681a715293b4
43 Ne7ed83a2f3a84b948b7452e845a93f4f
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005014114
45 https://doi.org/10.1007/s11856-016-1399-1
46 schema:sdDatePublished 2019-04-11T12:25
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N6b683cc5dff746ba8f37663c0c41cca8
49 schema:url https://link.springer.com/10.1007%2Fs11856-016-1399-1
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N1c3a276d4b914d7fbcafb48be2b20dbe schema:volumeNumber 215
54 rdf:type schema:PublicationVolume
55 N4d7c1e5d51d248f3b2af39b46c7a1c89 schema:issueNumber 2
56 rdf:type schema:PublicationIssue
57 N6b683cc5dff746ba8f37663c0c41cca8 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 Ncf374031671a4c1aac78acf5a5231e76 schema:name dimensions_id
60 schema:value pub.1005014114
61 rdf:type schema:PropertyValue
62 Ne73123881d2749d9baf7681a715293b4 schema:name doi
63 schema:value 10.1007/s11856-016-1399-1
64 rdf:type schema:PropertyValue
65 Ne7ed83a2f3a84b948b7452e845a93f4f schema:name readcube_id
66 schema:value 17e49321a7e84c37f1fcfbf32f862cabebec1cdb057a6a9d598a4da711ea0003
67 rdf:type schema:PropertyValue
68 Nf07b74f313b94861ad4a4c7dad2cd264 rdf:first sg:person.011770305357.55
69 rdf:rest rdf:nil
70 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
71 schema:name Mathematical Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
74 schema:name Pure Mathematics
75 rdf:type schema:DefinedTerm
76 sg:journal.1136632 schema:issn 0021-2172
77 1565-8511
78 schema:name Israel Journal of Mathematics
79 rdf:type schema:Periodical
80 sg:person.011770305357.55 schema:affiliation https://www.grid.ac/institutes/grid.493248.0
81 schema:familyName Ibarlucía
82 schema:givenName Tomás
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011770305357.55
84 rdf:type schema:Person
85 sg:pub.10.1007/978-1-4614-6406-8_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001572489
86 https://doi.org/10.1007/978-1-4614-6406-8_6
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/978-1-4757-4090-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705759
89 https://doi.org/10.1007/978-1-4757-4090-5
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/s00208-007-0097-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1050289672
92 https://doi.org/10.1007/s00208-007-0097-z
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/s002330010076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013156619
95 https://doi.org/10.1007/s002330010076
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/0003-4843(71)90015-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040850534
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.topol.2006.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042261943
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.topol.2007.08.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044016976
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1017/cbo9780511735219.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002774960
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1017/cbo9780511735264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098709860
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1017/cbo9781107415133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098679603
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1017/cbo9781139015417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098732088
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1017/jsl.2014.80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021988724
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1090/s0002-9947-10-04837-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059335068
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1090/s0002-9947-2012-05549-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059335670
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1090/s0002-9947-98-02329-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048355454
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1112/jlms/s2-45.2.377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015238857
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1112/plms/s3-29.2.331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017483779
122 rdf:type schema:CreativeWork
123 https://doi.org/10.2178/jsl/1286198151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039074069
124 rdf:type schema:CreativeWork
125 https://doi.org/10.2307/2373913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069900412
126 rdf:type schema:CreativeWork
127 https://doi.org/10.2307/2586800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047887382
128 rdf:type schema:CreativeWork
129 https://doi.org/10.4064/cm104-2-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072181750
130 rdf:type schema:CreativeWork
131 https://doi.org/10.4064/cm105-2-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072181780
132 rdf:type schema:CreativeWork
133 https://doi.org/10.4064/cm110-2-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072181901
134 rdf:type schema:CreativeWork
135 https://doi.org/10.4064/fm194-1-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072183537
136 rdf:type schema:CreativeWork
137 https://doi.org/10.4064/fm201-1-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072183621
138 rdf:type schema:CreativeWork
139 https://doi.org/10.4064/fm231-1-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072184057
140 rdf:type schema:CreativeWork
141 https://www.grid.ac/institutes/grid.493248.0 schema:alternateName Camille Jordan Institute
142 schema:name Université de Lyon Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, 43 blvd. du 11 novembre 1918, 69622, Villeurbanne Cedex, France
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...