Finitely many smooth d-polytopes with n lattice points View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-04

AUTHORS

Tristram Bogart, Christian Haase, Milena Hering, Benjamin Lorenz, Benjamin Nill, Andreas Paffenholz, Günter Rote, Francisco Santos, Hal Schenck

ABSTRACT

We prove that for fixed n there are only finitely many embeddings of ℚ-factorial toric varieties X into ℙn that are induced by a complete linear system. The proof is based on a combinatorial result that implies that for fixed nonnegative integers d and n, there are only finitely many smooth d-polytopes with n lattice points. We also enumerate all smooth 3-polytopes with ≤ 12 lattice points. More... »

PAGES

301-329

References to SciGraph publications

  • 2004-04. The Minimum Area of Convex Lattice n-Gons in COMBINATORICA
  • 2013-02. A classification of smooth convex 3-polytopes with at most 16 lattice points in JOURNAL OF ALGEBRAIC COMBINATORICS
  • 2000. polymake: a Framework for Analyzing Convex Polytopes in POLYTOPES — COMBINATORICS AND COMPUTATION
  • 1996. Combinatorial Convexity and Algebraic Geometry in NONE
  • 2010. Generating Smooth Lattice Polytopes in MATHEMATICAL SOFTWARE – ICMS 2010
  • 1995. Lectures on Polytopes, Updated Seventh Printing of the First Edition in NONE
  • 2002-05. On generators of ideals defining projective toric varieties in MANUSCRIPTA MATHEMATICA
  • 1999-03. On the classification of toric Fano 4-folds in JOURNAL OF MATHEMATICAL SCIENCES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11856-015-1175-7

    DOI

    http://dx.doi.org/10.1007/s11856-015-1175-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1025957456


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Universidad de Los Andes", 
              "id": "https://www.grid.ac/institutes/grid.7247.6", 
              "name": [
                "Universidad de los Andes, Cra 1, No. 18A-10, Edificio H, 111711, Bogot\u00e1, Colombia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bogart", 
            "givenName": "Tristram", 
            "id": "sg:person.011504445413.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011504445413.92"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Goethe University Frankfurt", 
              "id": "https://www.grid.ac/institutes/grid.7839.5", 
              "name": [
                "Goethe-Universit\u00e4t, Robert-Mayer-Stra\u00dfe 10, 60325, Frankfurt am Main, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Haase", 
            "givenName": "Christian", 
            "id": "sg:person.014025142137.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014025142137.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "School of Mathematics, The University of Edinburgh, The King\u2019s Buildings, EH9 3JZ, Edinburgh, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hering", 
            "givenName": "Milena", 
            "id": "sg:person.0645400064.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645400064.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technical University of Berlin", 
              "id": "https://www.grid.ac/institutes/grid.6734.6", 
              "name": [
                "Institut f\u00fcr Mathematik, Sekretariat MA, Technische Universit\u00e4t Berlin, 6-2 Stra\u00dfe des 17. Juni 136, 10623, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lorenz", 
            "givenName": "Benjamin", 
            "id": "sg:person.015420103137.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015420103137.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stockholm University", 
              "id": "https://www.grid.ac/institutes/grid.10548.38", 
              "name": [
                "Matematiska institutionen, Stockholms Universitet, 106 91, Stockholm, Sweden"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nill", 
            "givenName": "Benjamin", 
            "id": "sg:person.010644521313.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010644521313.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technical University of Darmstadt", 
              "id": "https://www.grid.ac/institutes/grid.6546.1", 
              "name": [
                "Technische Universit\u00e4t Darmstadt, FB Mathematik, Dolivostr. 15, 64293, Darmstadt, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Paffenholz", 
            "givenName": "Andreas", 
            "id": "sg:person.015367500441.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015367500441.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Freie Universit\u00e4t Berlin", 
              "id": "https://www.grid.ac/institutes/grid.14095.39", 
              "name": [
                "Institut f\u00fcr Informatik, Freie Universit\u00e4t Berlin, Takustr. 9, 14195, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rote", 
            "givenName": "G\u00fcnter", 
            "id": "sg:person.07676076735.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07676076735.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Cantabria", 
              "id": "https://www.grid.ac/institutes/grid.7821.c", 
              "name": [
                "Dept. Matematicas, Estad. y Comp., Universidad de Cantabria, E-39005, Santander, Spain"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Santos", 
            "givenName": "Francisco", 
            "id": "sg:person.013063416357.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013063416357.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Illinois at Urbana Champaign", 
              "id": "https://www.grid.ac/institutes/grid.35403.31", 
              "name": [
                "Mathematics Department, University of Illinois, 61801, Urbana, Illinois, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schenck", 
            "givenName": "Hal", 
            "id": "sg:person.014264765255.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014264765255.37"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.aim.2011.12.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002070820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1112/s1461157008000387", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003443275"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002290200252", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006715563", 
              "https://doi.org/10.1007/s002290200252"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-4044-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007407680", 
              "https://doi.org/10.1007/978-1-4612-4044-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-4044-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007407680", 
              "https://doi.org/10.1007/978-1-4612-4044-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jsc.2003.04.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009944535"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15582-6_51", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012583830", 
              "https://doi.org/10.1007/978-3-642-15582-6_51"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-15582-6_51", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012583830", 
              "https://doi.org/10.1007/978-3-642-15582-6_51"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0040-9383(91)90015-v", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026581442"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/advgeom.2009.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027403339"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10801-012-0363-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028821524", 
              "https://doi.org/10.1007/s10801-012-0363-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10801-012-0363-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028821524", 
              "https://doi.org/10.1007/s10801-012-0363-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02367245", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030477427", 
              "https://doi.org/10.1007/bf02367245"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02367245", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030477427", 
              "https://doi.org/10.1007/bf02367245"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1112/plms/s3-7.1.378", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032931795"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4613-8431-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034126804", 
              "https://doi.org/10.1007/978-1-4613-8431-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4613-8431-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034126804", 
              "https://doi.org/10.1007/978-1-4613-8431-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00493-004-0012-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038210667", 
              "https://doi.org/10.1007/s00493-004-0012-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/crll.1997.485.123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042276108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-8438-9_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052208426", 
              "https://doi.org/10.1007/978-3-0348-8438-9_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-8438-9_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052208426", 
              "https://doi.org/10.1007/978-3-0348-8438-9_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1070/im1985v024n02abeh001229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058167199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1112/s0025579300014339", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062056556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2140/pjm.1983.105.183", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069068470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1970791", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069676103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2748/tmj/1145390208", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070920276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2748/tmj/1178207820", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070920350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2748/tmj/1178225343", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070920490"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2748/tmj/1178227429", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070920669"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4153/cjm-1991-058-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072267506"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4153/cjm-2010-070-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072268752"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4171/owr/2007/39", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072319166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/atmp.1998.v2.n4.a5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072456916"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/atmp.2000.v4.n6.a2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072457009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/conm/423/08082", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089202143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/9781400882526", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096910354"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511609589", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098682967"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/gsm/124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098792389"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-04", 
        "datePublishedReg": "2015-04-01", 
        "description": "We prove that for fixed n there are only finitely many embeddings of \u211a-factorial toric varieties X into \u2119n that are induced by a complete linear system. The proof is based on a combinatorial result that implies that for fixed nonnegative integers d and n, there are only finitely many smooth d-polytopes with n lattice points. We also enumerate all smooth 3-polytopes with \u2264 12 lattice points.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11856-015-1175-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136632", 
            "issn": [
              "0021-2172", 
              "1565-8511"
            ], 
            "name": "Israel Journal of Mathematics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "207"
          }
        ], 
        "name": "Finitely many smooth d-polytopes with n lattice points", 
        "pagination": "301-329", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "7ba9389d85dc806f1ff1f1f96cc6fda212c69a1823c478d41e0c8d5c2024e3b9"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11856-015-1175-7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1025957456"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11856-015-1175-7", 
          "https://app.dimensions.ai/details/publication/pub.1025957456"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T00:18", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000522.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11856-015-1175-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11856-015-1175-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11856-015-1175-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11856-015-1175-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11856-015-1175-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    244 TRIPLES      21 PREDICATES      59 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11856-015-1175-7 schema:about anzsrc-for:06
    2 anzsrc-for:0601
    3 schema:author N46810200f5da40c69d58cebe683acbbb
    4 schema:citation sg:pub.10.1007/978-1-4612-4044-0
    5 sg:pub.10.1007/978-1-4613-8431-1
    6 sg:pub.10.1007/978-3-0348-8438-9_2
    7 sg:pub.10.1007/978-3-642-15582-6_51
    8 sg:pub.10.1007/bf02367245
    9 sg:pub.10.1007/s002290200252
    10 sg:pub.10.1007/s00493-004-0012-0
    11 sg:pub.10.1007/s10801-012-0363-3
    12 https://doi.org/10.1016/0040-9383(91)90015-v
    13 https://doi.org/10.1016/j.aim.2011.12.003
    14 https://doi.org/10.1016/j.jsc.2003.04.003
    15 https://doi.org/10.1017/cbo9780511609589
    16 https://doi.org/10.1070/im1985v024n02abeh001229
    17 https://doi.org/10.1090/conm/423/08082
    18 https://doi.org/10.1090/gsm/124
    19 https://doi.org/10.1112/plms/s3-7.1.378
    20 https://doi.org/10.1112/s0025579300014339
    21 https://doi.org/10.1112/s1461157008000387
    22 https://doi.org/10.1515/9781400882526
    23 https://doi.org/10.1515/advgeom.2009.005
    24 https://doi.org/10.1515/crll.1997.485.123
    25 https://doi.org/10.2140/pjm.1983.105.183
    26 https://doi.org/10.2307/1970791
    27 https://doi.org/10.2748/tmj/1145390208
    28 https://doi.org/10.2748/tmj/1178207820
    29 https://doi.org/10.2748/tmj/1178225343
    30 https://doi.org/10.2748/tmj/1178227429
    31 https://doi.org/10.4153/cjm-1991-058-4
    32 https://doi.org/10.4153/cjm-2010-070-3
    33 https://doi.org/10.4171/owr/2007/39
    34 https://doi.org/10.4310/atmp.1998.v2.n4.a5
    35 https://doi.org/10.4310/atmp.2000.v4.n6.a2
    36 schema:datePublished 2015-04
    37 schema:datePublishedReg 2015-04-01
    38 schema:description We prove that for fixed n there are only finitely many embeddings of ℚ-factorial toric varieties X into ℙn that are induced by a complete linear system. The proof is based on a combinatorial result that implies that for fixed nonnegative integers d and n, there are only finitely many smooth d-polytopes with n lattice points. We also enumerate all smooth 3-polytopes with ≤ 12 lattice points.
    39 schema:genre research_article
    40 schema:inLanguage en
    41 schema:isAccessibleForFree true
    42 schema:isPartOf N677379dd20b0498fa486d2426c4a0980
    43 Ned54dd3e408140daa9c3176c2bd78ddc
    44 sg:journal.1136632
    45 schema:name Finitely many smooth d-polytopes with n lattice points
    46 schema:pagination 301-329
    47 schema:productId N4a531dc89d474578805e1d60f6cce086
    48 N702eaf69ed5342e286b274bb27deb4a1
    49 Nafc4d1afbd3c47d99d300e3d56390baf
    50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025957456
    51 https://doi.org/10.1007/s11856-015-1175-7
    52 schema:sdDatePublished 2019-04-11T00:18
    53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    54 schema:sdPublisher Nc9615af3935f4ec0a3d3d3a9685ff062
    55 schema:url http://link.springer.com/10.1007%2Fs11856-015-1175-7
    56 sgo:license sg:explorer/license/
    57 sgo:sdDataset articles
    58 rdf:type schema:ScholarlyArticle
    59 N024f00a8301f49558bf903fc29a3c52b rdf:first sg:person.010644521313.03
    60 rdf:rest N559c8109f5d64128aa2195634026cbc1
    61 N04afa2a1737e45999e0773d99d384e2c rdf:first sg:person.013063416357.90
    62 rdf:rest N3904f825a68c4208a7e4a97965897b7d
    63 N3904f825a68c4208a7e4a97965897b7d rdf:first sg:person.014264765255.37
    64 rdf:rest rdf:nil
    65 N46810200f5da40c69d58cebe683acbbb rdf:first sg:person.011504445413.92
    66 rdf:rest Nc44812c275e342e99e361fd994466ace
    67 N4a531dc89d474578805e1d60f6cce086 schema:name dimensions_id
    68 schema:value pub.1025957456
    69 rdf:type schema:PropertyValue
    70 N537ce9c84be84de88991f5a8b77a4a1d rdf:first sg:person.015420103137.22
    71 rdf:rest N024f00a8301f49558bf903fc29a3c52b
    72 N559c8109f5d64128aa2195634026cbc1 rdf:first sg:person.015367500441.32
    73 rdf:rest Nc7ee35b94e9241b1ba05fee4ef346b43
    74 N677379dd20b0498fa486d2426c4a0980 schema:issueNumber 1
    75 rdf:type schema:PublicationIssue
    76 N6fd9ff550f7d41839c0da507d775fdd7 schema:name School of Mathematics, The University of Edinburgh, The King’s Buildings, EH9 3JZ, Edinburgh, Russia
    77 rdf:type schema:Organization
    78 N702eaf69ed5342e286b274bb27deb4a1 schema:name readcube_id
    79 schema:value 7ba9389d85dc806f1ff1f1f96cc6fda212c69a1823c478d41e0c8d5c2024e3b9
    80 rdf:type schema:PropertyValue
    81 Nafc4d1afbd3c47d99d300e3d56390baf schema:name doi
    82 schema:value 10.1007/s11856-015-1175-7
    83 rdf:type schema:PropertyValue
    84 Nc44812c275e342e99e361fd994466ace rdf:first sg:person.014025142137.24
    85 rdf:rest Nee78a18551394341a577cfa128391533
    86 Nc7ee35b94e9241b1ba05fee4ef346b43 rdf:first sg:person.07676076735.35
    87 rdf:rest N04afa2a1737e45999e0773d99d384e2c
    88 Nc9615af3935f4ec0a3d3d3a9685ff062 schema:name Springer Nature - SN SciGraph project
    89 rdf:type schema:Organization
    90 Ned54dd3e408140daa9c3176c2bd78ddc schema:volumeNumber 207
    91 rdf:type schema:PublicationVolume
    92 Nee78a18551394341a577cfa128391533 rdf:first sg:person.0645400064.67
    93 rdf:rest N537ce9c84be84de88991f5a8b77a4a1d
    94 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    95 schema:name Biological Sciences
    96 rdf:type schema:DefinedTerm
    97 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    98 schema:name Biochemistry and Cell Biology
    99 rdf:type schema:DefinedTerm
    100 sg:journal.1136632 schema:issn 0021-2172
    101 1565-8511
    102 schema:name Israel Journal of Mathematics
    103 rdf:type schema:Periodical
    104 sg:person.010644521313.03 schema:affiliation https://www.grid.ac/institutes/grid.10548.38
    105 schema:familyName Nill
    106 schema:givenName Benjamin
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010644521313.03
    108 rdf:type schema:Person
    109 sg:person.011504445413.92 schema:affiliation https://www.grid.ac/institutes/grid.7247.6
    110 schema:familyName Bogart
    111 schema:givenName Tristram
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011504445413.92
    113 rdf:type schema:Person
    114 sg:person.013063416357.90 schema:affiliation https://www.grid.ac/institutes/grid.7821.c
    115 schema:familyName Santos
    116 schema:givenName Francisco
    117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013063416357.90
    118 rdf:type schema:Person
    119 sg:person.014025142137.24 schema:affiliation https://www.grid.ac/institutes/grid.7839.5
    120 schema:familyName Haase
    121 schema:givenName Christian
    122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014025142137.24
    123 rdf:type schema:Person
    124 sg:person.014264765255.37 schema:affiliation https://www.grid.ac/institutes/grid.35403.31
    125 schema:familyName Schenck
    126 schema:givenName Hal
    127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014264765255.37
    128 rdf:type schema:Person
    129 sg:person.015367500441.32 schema:affiliation https://www.grid.ac/institutes/grid.6546.1
    130 schema:familyName Paffenholz
    131 schema:givenName Andreas
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015367500441.32
    133 rdf:type schema:Person
    134 sg:person.015420103137.22 schema:affiliation https://www.grid.ac/institutes/grid.6734.6
    135 schema:familyName Lorenz
    136 schema:givenName Benjamin
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015420103137.22
    138 rdf:type schema:Person
    139 sg:person.0645400064.67 schema:affiliation N6fd9ff550f7d41839c0da507d775fdd7
    140 schema:familyName Hering
    141 schema:givenName Milena
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645400064.67
    143 rdf:type schema:Person
    144 sg:person.07676076735.35 schema:affiliation https://www.grid.ac/institutes/grid.14095.39
    145 schema:familyName Rote
    146 schema:givenName Günter
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07676076735.35
    148 rdf:type schema:Person
    149 sg:pub.10.1007/978-1-4612-4044-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007407680
    150 https://doi.org/10.1007/978-1-4612-4044-0
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/978-1-4613-8431-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034126804
    153 https://doi.org/10.1007/978-1-4613-8431-1
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/978-3-0348-8438-9_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052208426
    156 https://doi.org/10.1007/978-3-0348-8438-9_2
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/978-3-642-15582-6_51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012583830
    159 https://doi.org/10.1007/978-3-642-15582-6_51
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/bf02367245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030477427
    162 https://doi.org/10.1007/bf02367245
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/s002290200252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006715563
    165 https://doi.org/10.1007/s002290200252
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/s00493-004-0012-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038210667
    168 https://doi.org/10.1007/s00493-004-0012-0
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/s10801-012-0363-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028821524
    171 https://doi.org/10.1007/s10801-012-0363-3
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1016/0040-9383(91)90015-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1026581442
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1016/j.aim.2011.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002070820
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1016/j.jsc.2003.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009944535
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1017/cbo9780511609589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098682967
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1070/im1985v024n02abeh001229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058167199
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1090/conm/423/08082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089202143
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1090/gsm/124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098792389
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1112/plms/s3-7.1.378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032931795
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1112/s0025579300014339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062056556
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1112/s1461157008000387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003443275
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1515/9781400882526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096910354
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1515/advgeom.2009.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027403339
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1515/crll.1997.485.123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042276108
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.2140/pjm.1983.105.183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069068470
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.2307/1970791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069676103
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.2748/tmj/1145390208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070920276
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.2748/tmj/1178207820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070920350
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.2748/tmj/1178225343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070920490
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.2748/tmj/1178227429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070920669
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.4153/cjm-1991-058-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072267506
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.4153/cjm-2010-070-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072268752
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.4171/owr/2007/39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072319166
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.4310/atmp.1998.v2.n4.a5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072456916
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.4310/atmp.2000.v4.n6.a2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072457009
    220 rdf:type schema:CreativeWork
    221 https://www.grid.ac/institutes/grid.10548.38 schema:alternateName Stockholm University
    222 schema:name Matematiska institutionen, Stockholms Universitet, 106 91, Stockholm, Sweden
    223 rdf:type schema:Organization
    224 https://www.grid.ac/institutes/grid.14095.39 schema:alternateName Freie Universität Berlin
    225 schema:name Institut für Informatik, Freie Universität Berlin, Takustr. 9, 14195, Berlin, Germany
    226 rdf:type schema:Organization
    227 https://www.grid.ac/institutes/grid.35403.31 schema:alternateName University of Illinois at Urbana Champaign
    228 schema:name Mathematics Department, University of Illinois, 61801, Urbana, Illinois, USA
    229 rdf:type schema:Organization
    230 https://www.grid.ac/institutes/grid.6546.1 schema:alternateName Technical University of Darmstadt
    231 schema:name Technische Universität Darmstadt, FB Mathematik, Dolivostr. 15, 64293, Darmstadt, Germany
    232 rdf:type schema:Organization
    233 https://www.grid.ac/institutes/grid.6734.6 schema:alternateName Technical University of Berlin
    234 schema:name Institut für Mathematik, Sekretariat MA, Technische Universität Berlin, 6-2 Straße des 17. Juni 136, 10623, Berlin, Germany
    235 rdf:type schema:Organization
    236 https://www.grid.ac/institutes/grid.7247.6 schema:alternateName Universidad de Los Andes
    237 schema:name Universidad de los Andes, Cra 1, No. 18A-10, Edificio H, 111711, Bogotá, Colombia
    238 rdf:type schema:Organization
    239 https://www.grid.ac/institutes/grid.7821.c schema:alternateName University of Cantabria
    240 schema:name Dept. Matematicas, Estad. y Comp., Universidad de Cantabria, E-39005, Santander, Spain
    241 rdf:type schema:Organization
    242 https://www.grid.ac/institutes/grid.7839.5 schema:alternateName Goethe University Frankfurt
    243 schema:name Goethe-Universität, Robert-Mayer-Straße 10, 60325, Frankfurt am Main, Germany
    244 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...