Desingularization preserving stable simple normal crossings View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-02

AUTHORS

Edward Bierstone, Franklin Vera Pacheco

ABSTRACT

The subject is partial resolution of singularities. Given an algebraic variety X (not necessarily equidimensional) in characteristic zero (or, more generally, a pair (X, D), where D is a divisor on X), we construct a functorial desingularization of all but stable simple normal crossings (stable-snc) singularities, by smooth blowings-up that preserve such singularities. A variety has stable simple normal crossings at a point if, locally, its irreducible components are smooth and transverse in some smooth embedding variety. We also show that our main assertion is false for more general simple normal crossings singularities. More... »

PAGES

233-280

References to SciGraph publications

  • 1997-04. Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant in INVENTIONES MATHEMATICAE
  • 2013-03. Resolution of singularities of pairs preserving semi-simple normal crossings in REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS, FÍSICAS Y NATURALES. SERIE A. MATEMÁTICAS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11856-015-1151-2

    DOI

    http://dx.doi.org/10.1007/s11856-015-1151-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1024250775


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Fields Institute for Research in Mathematical Sciences", 
              "id": "https://www.grid.ac/institutes/grid.249304.8", 
              "name": [
                "Department of Mathematics, University of Toronto, 40 St. George Street, M5S 2E4, Toronto, ON, Canada", 
                "The Fields Institute, 222 College Street, M5T 3J1, Toronto, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bierstone", 
            "givenName": "Edward", 
            "id": "sg:person.01123651724.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123651724.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Fields Institute for Research in Mathematical Sciences", 
              "id": "https://www.grid.ac/institutes/grid.249304.8", 
              "name": [
                "Department of Mathematics, University of Toronto, 40 St. George Street, M5S 2E4, Toronto, ON, Canada", 
                "The Fields Institute, 222 College Street, M5T 3J1, Toronto, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pacheco", 
            "givenName": "Franklin Vera", 
            "id": "sg:person.015655011565.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015655011565.18"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s002220050141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024103176", 
              "https://doi.org/10.1007/s002220050141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jalgebra.2010.06.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027236609"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aim.2012.08.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029100426"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9939-2014-12178-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039585595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0894-0347-1989-1001853-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041148620"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13398-012-0092-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051278819", 
              "https://doi.org/10.1007/s13398-012-0092-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.14231/ag-2014-011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067217819"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2977/prims/1210167338", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070935836"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/ajm.2011.v15.n2.a5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072456669"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-02", 
        "datePublishedReg": "2015-02-01", 
        "description": "The subject is partial resolution of singularities. Given an algebraic variety X (not necessarily equidimensional) in characteristic zero (or, more generally, a pair (X, D), where D is a divisor on X), we construct a functorial desingularization of all but stable simple normal crossings (stable-snc) singularities, by smooth blowings-up that preserve such singularities. A variety has stable simple normal crossings at a point if, locally, its irreducible components are smooth and transverse in some smooth embedding variety. We also show that our main assertion is false for more general simple normal crossings singularities.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11856-015-1151-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136632", 
            "issn": [
              "0021-2172", 
              "1565-8511"
            ], 
            "name": "Israel Journal of Mathematics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "206"
          }
        ], 
        "name": "Desingularization preserving stable simple normal crossings", 
        "pagination": "233-280", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "7388be32d33d89f3980f274237864979fc66dd76e113ae7068eb03b6b2032e78"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11856-015-1151-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1024250775"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11856-015-1151-2", 
          "https://app.dimensions.ai/details/publication/pub.1024250775"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T20:49", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000522.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11856-015-1151-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11856-015-1151-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11856-015-1151-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11856-015-1151-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11856-015-1151-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    98 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11856-015-1151-2 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nc168de0c544241d186b6966dcaa075d0
    4 schema:citation sg:pub.10.1007/s002220050141
    5 sg:pub.10.1007/s13398-012-0092-4
    6 https://doi.org/10.1016/j.aim.2012.08.002
    7 https://doi.org/10.1016/j.jalgebra.2010.06.008
    8 https://doi.org/10.1090/s0002-9939-2014-12178-2
    9 https://doi.org/10.1090/s0894-0347-1989-1001853-2
    10 https://doi.org/10.14231/ag-2014-011
    11 https://doi.org/10.2977/prims/1210167338
    12 https://doi.org/10.4310/ajm.2011.v15.n2.a5
    13 schema:datePublished 2015-02
    14 schema:datePublishedReg 2015-02-01
    15 schema:description The subject is partial resolution of singularities. Given an algebraic variety X (not necessarily equidimensional) in characteristic zero (or, more generally, a pair (X, D), where D is a divisor on X), we construct a functorial desingularization of all but stable simple normal crossings (stable-snc) singularities, by smooth blowings-up that preserve such singularities. A variety has stable simple normal crossings at a point if, locally, its irreducible components are smooth and transverse in some smooth embedding variety. We also show that our main assertion is false for more general simple normal crossings singularities.
    16 schema:genre research_article
    17 schema:inLanguage en
    18 schema:isAccessibleForFree true
    19 schema:isPartOf N072ac201455b494d94370e32c6364a61
    20 N8e9f224c5b5f4409bfc2a93adbc7da02
    21 sg:journal.1136632
    22 schema:name Desingularization preserving stable simple normal crossings
    23 schema:pagination 233-280
    24 schema:productId N721ba48d46144108b402f34d0a5cec09
    25 N73881f3443c042eeb103702727b14c7f
    26 Na545fe555398485da0f8d6bb97f44b9a
    27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024250775
    28 https://doi.org/10.1007/s11856-015-1151-2
    29 schema:sdDatePublished 2019-04-10T20:49
    30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    31 schema:sdPublisher N9d271ca883de4adf95a70b1aed1c4c3c
    32 schema:url http://link.springer.com/10.1007%2Fs11856-015-1151-2
    33 sgo:license sg:explorer/license/
    34 sgo:sdDataset articles
    35 rdf:type schema:ScholarlyArticle
    36 N072ac201455b494d94370e32c6364a61 schema:volumeNumber 206
    37 rdf:type schema:PublicationVolume
    38 N721ba48d46144108b402f34d0a5cec09 schema:name doi
    39 schema:value 10.1007/s11856-015-1151-2
    40 rdf:type schema:PropertyValue
    41 N73881f3443c042eeb103702727b14c7f schema:name dimensions_id
    42 schema:value pub.1024250775
    43 rdf:type schema:PropertyValue
    44 N797cb85649a2401ea7ed1fa34e457d4e rdf:first sg:person.015655011565.18
    45 rdf:rest rdf:nil
    46 N8e9f224c5b5f4409bfc2a93adbc7da02 schema:issueNumber 1
    47 rdf:type schema:PublicationIssue
    48 N9d271ca883de4adf95a70b1aed1c4c3c schema:name Springer Nature - SN SciGraph project
    49 rdf:type schema:Organization
    50 Na545fe555398485da0f8d6bb97f44b9a schema:name readcube_id
    51 schema:value 7388be32d33d89f3980f274237864979fc66dd76e113ae7068eb03b6b2032e78
    52 rdf:type schema:PropertyValue
    53 Nc168de0c544241d186b6966dcaa075d0 rdf:first sg:person.01123651724.63
    54 rdf:rest N797cb85649a2401ea7ed1fa34e457d4e
    55 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    56 schema:name Mathematical Sciences
    57 rdf:type schema:DefinedTerm
    58 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    59 schema:name Pure Mathematics
    60 rdf:type schema:DefinedTerm
    61 sg:journal.1136632 schema:issn 0021-2172
    62 1565-8511
    63 schema:name Israel Journal of Mathematics
    64 rdf:type schema:Periodical
    65 sg:person.01123651724.63 schema:affiliation https://www.grid.ac/institutes/grid.249304.8
    66 schema:familyName Bierstone
    67 schema:givenName Edward
    68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123651724.63
    69 rdf:type schema:Person
    70 sg:person.015655011565.18 schema:affiliation https://www.grid.ac/institutes/grid.249304.8
    71 schema:familyName Pacheco
    72 schema:givenName Franklin Vera
    73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015655011565.18
    74 rdf:type schema:Person
    75 sg:pub.10.1007/s002220050141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024103176
    76 https://doi.org/10.1007/s002220050141
    77 rdf:type schema:CreativeWork
    78 sg:pub.10.1007/s13398-012-0092-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051278819
    79 https://doi.org/10.1007/s13398-012-0092-4
    80 rdf:type schema:CreativeWork
    81 https://doi.org/10.1016/j.aim.2012.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029100426
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1016/j.jalgebra.2010.06.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027236609
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1090/s0002-9939-2014-12178-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039585595
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1090/s0894-0347-1989-1001853-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041148620
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.14231/ag-2014-011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067217819
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.2977/prims/1210167338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070935836
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.4310/ajm.2011.v15.n2.a5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072456669
    94 rdf:type schema:CreativeWork
    95 https://www.grid.ac/institutes/grid.249304.8 schema:alternateName Fields Institute for Research in Mathematical Sciences
    96 schema:name Department of Mathematics, University of Toronto, 40 St. George Street, M5S 2E4, Toronto, ON, Canada
    97 The Fields Institute, 222 College Street, M5T 3J1, Toronto, ON, Canada
    98 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...