Effective estimates on indefinite ternary forms View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-10

AUTHORS

Elon Lindenstrauss, Gregory Margulis

ABSTRACT

We give an effective proof of a theorem of Dani and Margulis regarding values of indefinite ternary quadratic forms at primitive integer vectors. The proof uses an effective density-type result for orbits of the groups SO(2, 1) on SL(3, ℝ)/SL(3, ℤ).

PAGES

445-499

Journal

TITLE

Israel Journal of Mathematics

ISSUE

1

VOLUME

203

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11856-014-1110-3

DOI

http://dx.doi.org/10.1007/s11856-014-1110-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045246490


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hebrew University of Jerusalem", 
          "id": "https://www.grid.ac/institutes/grid.9619.7", 
          "name": [
            "Einstein Institute of Mathematics, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lindenstrauss", 
        "givenName": "Elon", 
        "id": "sg:person.01232401074.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232401074.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Yale University Mathematics Department, PO Box 208283, 06520, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Margulis", 
        "givenName": "Gregory", 
        "id": "sg:person.01247226110.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247226110.63"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01578067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000217224", 
          "https://doi.org/10.1007/bf01578067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01578067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000217224", 
          "https://doi.org/10.1007/bf01578067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/jlms/s1-21.3.185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003196769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01231565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007331761", 
          "https://doi.org/10.1007/bf01231565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.1955.0010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012960793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00222-009-0177-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021515131", 
          "https://doi.org/10.1007/s00222-009-0177-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00222-009-0177-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021515131", 
          "https://doi.org/10.1007/s00222-009-0177-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02787100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032767280", 
          "https://doi.org/10.1007/bf02787100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02787100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032767280", 
          "https://doi.org/10.1007/bf02787100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01388860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034702929", 
          "https://doi.org/10.1007/bf01388860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02391906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034795918", 
          "https://doi.org/10.1007/bf02391906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01231511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042685737", 
          "https://doi.org/10.1007/bf01231511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01231511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042685737", 
          "https://doi.org/10.1007/bf01231511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01453567", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044453697", 
          "https://doi.org/10.1007/bf01453567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-067570-8.50029-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049645703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0143385700001474", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053841172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0143385700001474", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053841172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0143385700003382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053860587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0143385700003382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053860587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0143385710000799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053975126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0143385710000799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053975126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/00127094-2009-023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064411170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-91-06311-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064419681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/120997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069397470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/121060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069397520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2007030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069694794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2944357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070142665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/advsov/016.1/03", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101567760"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-10", 
    "datePublishedReg": "2014-10-01", 
    "description": "We give an effective proof of a theorem of Dani and Margulis regarding values of indefinite ternary quadratic forms at primitive integer vectors. The proof uses an effective density-type result for orbits of the groups SO(2, 1) on SL(3, \u211d)/SL(3, \u2124).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11856-014-1110-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136632", 
        "issn": [
          "0021-2172", 
          "1565-8511"
        ], 
        "name": "Israel Journal of Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "203"
      }
    ], 
    "name": "Effective estimates on indefinite ternary forms", 
    "pagination": "445-499", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d7865c0c46ed995695cf08f6997595dea815cc595fa2b56a44c7a4262fae0e8c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11856-014-1110-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045246490"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11856-014-1110-3", 
      "https://app.dimensions.ai/details/publication/pub.1045246490"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000524.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11856-014-1110-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11856-014-1110-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11856-014-1110-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11856-014-1110-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11856-014-1110-3'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      20 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11856-014-1110-3 schema:author N6dd222e02a3f478b896b9c057cf83369
2 schema:citation sg:pub.10.1007/bf01231511
3 sg:pub.10.1007/bf01231565
4 sg:pub.10.1007/bf01388860
5 sg:pub.10.1007/bf01453567
6 sg:pub.10.1007/bf01578067
7 sg:pub.10.1007/bf02391906
8 sg:pub.10.1007/bf02787100
9 sg:pub.10.1007/s00222-009-0177-7
10 https://doi.org/10.1016/b978-0-12-067570-8.50029-9
11 https://doi.org/10.1017/s0143385700001474
12 https://doi.org/10.1017/s0143385700003382
13 https://doi.org/10.1017/s0143385710000799
14 https://doi.org/10.1090/advsov/016.1/03
15 https://doi.org/10.1098/rsta.1955.0010
16 https://doi.org/10.1112/jlms/s1-21.3.185
17 https://doi.org/10.1215/00127094-2009-023
18 https://doi.org/10.1215/s0012-7094-91-06311-8
19 https://doi.org/10.2307/120997
20 https://doi.org/10.2307/121060
21 https://doi.org/10.2307/2007030
22 https://doi.org/10.2307/2944357
23 schema:datePublished 2014-10
24 schema:datePublishedReg 2014-10-01
25 schema:description We give an effective proof of a theorem of Dani and Margulis regarding values of indefinite ternary quadratic forms at primitive integer vectors. The proof uses an effective density-type result for orbits of the groups SO(2, 1) on SL(3, ℝ)/SL(3, ℤ).
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree true
29 schema:isPartOf N55242f785c964d9daae5f087d357a4a2
30 Nde3ec6fbc45340be884e87361de03c2c
31 sg:journal.1136632
32 schema:name Effective estimates on indefinite ternary forms
33 schema:pagination 445-499
34 schema:productId N6bfc170c2c9344f6beb5b85807cc34fd
35 N8426c66d03884d60a736921755af0c4c
36 Nd1707411ee5149899d3ad298809e6425
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045246490
38 https://doi.org/10.1007/s11856-014-1110-3
39 schema:sdDatePublished 2019-04-10T19:11
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher Nfa57a395f45f4e289a9c6aa647d19ade
42 schema:url http://link.springer.com/10.1007%2Fs11856-014-1110-3
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N55242f785c964d9daae5f087d357a4a2 schema:issueNumber 1
47 rdf:type schema:PublicationIssue
48 N6bfc170c2c9344f6beb5b85807cc34fd schema:name doi
49 schema:value 10.1007/s11856-014-1110-3
50 rdf:type schema:PropertyValue
51 N6dd222e02a3f478b896b9c057cf83369 rdf:first sg:person.01232401074.40
52 rdf:rest Nf254f3ba2d3841beb1e9a6699583d1a1
53 N8426c66d03884d60a736921755af0c4c schema:name readcube_id
54 schema:value d7865c0c46ed995695cf08f6997595dea815cc595fa2b56a44c7a4262fae0e8c
55 rdf:type schema:PropertyValue
56 Nd1707411ee5149899d3ad298809e6425 schema:name dimensions_id
57 schema:value pub.1045246490
58 rdf:type schema:PropertyValue
59 Nde3ec6fbc45340be884e87361de03c2c schema:volumeNumber 203
60 rdf:type schema:PublicationVolume
61 Nf254f3ba2d3841beb1e9a6699583d1a1 rdf:first sg:person.01247226110.63
62 rdf:rest rdf:nil
63 Nfa57a395f45f4e289a9c6aa647d19ade schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 sg:journal.1136632 schema:issn 0021-2172
66 1565-8511
67 schema:name Israel Journal of Mathematics
68 rdf:type schema:Periodical
69 sg:person.01232401074.40 schema:affiliation https://www.grid.ac/institutes/grid.9619.7
70 schema:familyName Lindenstrauss
71 schema:givenName Elon
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232401074.40
73 rdf:type schema:Person
74 sg:person.01247226110.63 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
75 schema:familyName Margulis
76 schema:givenName Gregory
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247226110.63
78 rdf:type schema:Person
79 sg:pub.10.1007/bf01231511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042685737
80 https://doi.org/10.1007/bf01231511
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/bf01231565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007331761
83 https://doi.org/10.1007/bf01231565
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/bf01388860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034702929
86 https://doi.org/10.1007/bf01388860
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/bf01453567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044453697
89 https://doi.org/10.1007/bf01453567
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/bf01578067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000217224
92 https://doi.org/10.1007/bf01578067
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/bf02391906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034795918
95 https://doi.org/10.1007/bf02391906
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bf02787100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032767280
98 https://doi.org/10.1007/bf02787100
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/s00222-009-0177-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021515131
101 https://doi.org/10.1007/s00222-009-0177-7
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/b978-0-12-067570-8.50029-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049645703
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1017/s0143385700001474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053841172
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1017/s0143385700003382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053860587
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1017/s0143385710000799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053975126
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1090/advsov/016.1/03 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101567760
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1098/rsta.1955.0010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012960793
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1112/jlms/s1-21.3.185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003196769
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1215/00127094-2009-023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064411170
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1215/s0012-7094-91-06311-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064419681
120 rdf:type schema:CreativeWork
121 https://doi.org/10.2307/120997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069397470
122 rdf:type schema:CreativeWork
123 https://doi.org/10.2307/121060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069397520
124 rdf:type schema:CreativeWork
125 https://doi.org/10.2307/2007030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069694794
126 rdf:type schema:CreativeWork
127 https://doi.org/10.2307/2944357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070142665
128 rdf:type schema:CreativeWork
129 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
130 schema:name Yale University Mathematics Department, PO Box 208283, 06520, New Haven, CT, USA
131 rdf:type schema:Organization
132 https://www.grid.ac/institutes/grid.9619.7 schema:alternateName Hebrew University of Jerusalem
133 schema:name Einstein Institute of Mathematics, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
134 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...