Optimal transportation on non-compact manifolds View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-01

AUTHORS

Albert Fathi, Alessio Figalli

ABSTRACT

In this work, we show how to obtain for non-compact manifolds the results that have already been done for Monge Transport Problem for costs coming from Tonelli Lagrangians on compact manifolds. In particular, the already known results for a cost of the type dr, r > 1, where d is the Riemannian distance of a complete Riemannian manifold, hold without any curvature restriction. More... »

PAGES

1-59

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11856-010-0001-5

DOI

http://dx.doi.org/10.1007/s11856-010-0001-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014581017


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Unit of Mathematics, Pure and Applied", 
          "id": "https://www.grid.ac/institutes/grid.464112.4", 
          "name": [
            "UMPA, ENS Lyon, 46 All\u00e9e d\u2019Italie, 69007, Lyon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fathi", 
        "givenName": "Albert", 
        "id": "sg:person.014456105345.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014456105345.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Scuola Normale Superiore di Pisa", 
          "id": "https://www.grid.ac/institutes/grid.6093.c", 
          "name": [
            "Scuola Normale Superiore, Piazza dei Cavalieri 7, 56100, Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Figalli", 
        "givenName": "Alessio", 
        "id": "sg:person.014274533202.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014274533202.64"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1005843858", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8540-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005843858", 
          "https://doi.org/10.1007/978-3-0348-8540-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8540-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005843858", 
          "https://doi.org/10.1007/978-3-0348-8540-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02392620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007153925", 
          "https://doi.org/10.1007/bf02392620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b138356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007174052", 
          "https://doi.org/10.1007/b138356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1007174052", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0074076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008472145", 
          "https://doi.org/10.1007/bfb0074076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00934745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010186436", 
          "https://doi.org/10.1007/bf00934745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00934745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010186436", 
          "https://doi.org/10.1007/bf00934745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00009922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011903945", 
          "https://doi.org/10.1007/pl00009922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00001679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012624304", 
          "https://doi.org/10.1007/pl00001679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-01-02930-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016817680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aim.2006.01.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019349405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1985-0779053-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021418323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-44857-0_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024913881", 
          "https://doi.org/10.1007/978-3-540-44857-0_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160440402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032992596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160440402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032992596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-39189-0_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036378912", 
          "https://doi.org/10.1007/978-3-540-39189-0_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0047-259x(90)90070-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037701492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0040-9383(82)90023-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037738931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-0399-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039112534", 
          "https://doi.org/10.1007/978-1-4899-0399-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-0399-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039112534", 
          "https://doi.org/10.1007/978-1-4899-0399-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8057-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041652884", 
          "https://doi.org/10.1007/978-3-0348-8057-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8057-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041652884", 
          "https://doi.org/10.1007/978-3-0348-8057-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0894-0347-01-00376-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043961750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-247x(89)90001-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046057743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/crll.1979.307-308.309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049352484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0143385707000132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053996269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0143385707000132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053996269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-08-09419-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059331927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/memo/0653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059343702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/jems/74", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072318307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/cdm.1997.v1997.n1.a2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072458234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5802/afst.1059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073135174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1085150141", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1085150141", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/conm/226/03236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089203872"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-01", 
    "datePublishedReg": "2010-01-01", 
    "description": "In this work, we show how to obtain for non-compact manifolds the results that have already been done for Monge Transport Problem for costs coming from Tonelli Lagrangians on compact manifolds. In particular, the already known results for a cost of the type dr, r > 1, where d is the Riemannian distance of a complete Riemannian manifold, hold without any curvature restriction.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11856-010-0001-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136632", 
        "issn": [
          "0021-2172", 
          "1565-8511"
        ], 
        "name": "Israel Journal of Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "175"
      }
    ], 
    "name": "Optimal transportation on non-compact manifolds", 
    "pagination": "1-59", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "457692d04298df5bf5c2033a8fec82e375fc6cadbca9cbe3e0b3de7e59480181"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11856-010-0001-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014581017"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11856-010-0001-5", 
      "https://app.dimensions.ai/details/publication/pub.1014581017"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54298_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11856-010-0001-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11856-010-0001-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11856-010-0001-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11856-010-0001-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11856-010-0001-5'


 

This table displays all metadata directly associated to this object as RDF triples.

169 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11856-010-0001-5 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nc49b438b1f3d44dc9a005385f25e355b
4 schema:citation sg:pub.10.1007/978-1-4899-0399-0
5 sg:pub.10.1007/978-3-0348-8057-2
6 sg:pub.10.1007/978-3-0348-8540-9
7 sg:pub.10.1007/978-3-540-39189-0_1
8 sg:pub.10.1007/978-3-540-44857-0_5
9 sg:pub.10.1007/b138356
10 sg:pub.10.1007/bf00934745
11 sg:pub.10.1007/bf02392620
12 sg:pub.10.1007/bfb0074076
13 sg:pub.10.1007/pl00001679
14 sg:pub.10.1007/pl00009922
15 https://app.dimensions.ai/details/publication/pub.1005843858
16 https://app.dimensions.ai/details/publication/pub.1007174052
17 https://app.dimensions.ai/details/publication/pub.1085150141
18 https://doi.org/10.1002/cpa.3160440402
19 https://doi.org/10.1016/0022-247x(89)90001-2
20 https://doi.org/10.1016/0040-9383(82)90023-4
21 https://doi.org/10.1016/0047-259x(90)90070-x
22 https://doi.org/10.1016/j.aim.2006.01.003
23 https://doi.org/10.1017/s0143385707000132
24 https://doi.org/10.1090/conm/226/03236
25 https://doi.org/10.1090/memo/0653
26 https://doi.org/10.1090/s0002-9939-08-09419-7
27 https://doi.org/10.1090/s0002-9947-01-02930-0
28 https://doi.org/10.1090/s0002-9947-1985-0779053-3
29 https://doi.org/10.1090/s0894-0347-01-00376-9
30 https://doi.org/10.1515/crll.1979.307-308.309
31 https://doi.org/10.4171/jems/74
32 https://doi.org/10.4310/cdm.1997.v1997.n1.a2
33 https://doi.org/10.5802/afst.1059
34 schema:datePublished 2010-01
35 schema:datePublishedReg 2010-01-01
36 schema:description In this work, we show how to obtain for non-compact manifolds the results that have already been done for Monge Transport Problem for costs coming from Tonelli Lagrangians on compact manifolds. In particular, the already known results for a cost of the type dr, r > 1, where d is the Riemannian distance of a complete Riemannian manifold, hold without any curvature restriction.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree true
40 schema:isPartOf N277e0958b0844e3eaec5f5d981c7721a
41 Nfbbfc0dfa4ab421fa85702e196ee3e84
42 sg:journal.1136632
43 schema:name Optimal transportation on non-compact manifolds
44 schema:pagination 1-59
45 schema:productId N174eaa3787724069bb2aed7f62c9cc9b
46 N221946d08eba49db92460da70dc0fa6e
47 Ndc11e4eecabc4f99a40cf0d31e2a6b3b
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014581017
49 https://doi.org/10.1007/s11856-010-0001-5
50 schema:sdDatePublished 2019-04-11T10:15
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N725c7d952eca48f79e3aea85ec4c930b
53 schema:url http://link.springer.com/10.1007%2Fs11856-010-0001-5
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N174eaa3787724069bb2aed7f62c9cc9b schema:name readcube_id
58 schema:value 457692d04298df5bf5c2033a8fec82e375fc6cadbca9cbe3e0b3de7e59480181
59 rdf:type schema:PropertyValue
60 N221946d08eba49db92460da70dc0fa6e schema:name doi
61 schema:value 10.1007/s11856-010-0001-5
62 rdf:type schema:PropertyValue
63 N277e0958b0844e3eaec5f5d981c7721a schema:volumeNumber 175
64 rdf:type schema:PublicationVolume
65 N7086e69c490d4a95ad07935dabd96ed9 rdf:first sg:person.014274533202.64
66 rdf:rest rdf:nil
67 N725c7d952eca48f79e3aea85ec4c930b schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 Nc49b438b1f3d44dc9a005385f25e355b rdf:first sg:person.014456105345.67
70 rdf:rest N7086e69c490d4a95ad07935dabd96ed9
71 Ndc11e4eecabc4f99a40cf0d31e2a6b3b schema:name dimensions_id
72 schema:value pub.1014581017
73 rdf:type schema:PropertyValue
74 Nfbbfc0dfa4ab421fa85702e196ee3e84 schema:issueNumber 1
75 rdf:type schema:PublicationIssue
76 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
77 schema:name Mathematical Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
80 schema:name Pure Mathematics
81 rdf:type schema:DefinedTerm
82 sg:journal.1136632 schema:issn 0021-2172
83 1565-8511
84 schema:name Israel Journal of Mathematics
85 rdf:type schema:Periodical
86 sg:person.014274533202.64 schema:affiliation https://www.grid.ac/institutes/grid.6093.c
87 schema:familyName Figalli
88 schema:givenName Alessio
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014274533202.64
90 rdf:type schema:Person
91 sg:person.014456105345.67 schema:affiliation https://www.grid.ac/institutes/grid.464112.4
92 schema:familyName Fathi
93 schema:givenName Albert
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014456105345.67
95 rdf:type schema:Person
96 sg:pub.10.1007/978-1-4899-0399-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039112534
97 https://doi.org/10.1007/978-1-4899-0399-0
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/978-3-0348-8057-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041652884
100 https://doi.org/10.1007/978-3-0348-8057-2
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/978-3-0348-8540-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005843858
103 https://doi.org/10.1007/978-3-0348-8540-9
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/978-3-540-39189-0_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036378912
106 https://doi.org/10.1007/978-3-540-39189-0_1
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/978-3-540-44857-0_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024913881
109 https://doi.org/10.1007/978-3-540-44857-0_5
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/b138356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007174052
112 https://doi.org/10.1007/b138356
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/bf00934745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010186436
115 https://doi.org/10.1007/bf00934745
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/bf02392620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007153925
118 https://doi.org/10.1007/bf02392620
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/bfb0074076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008472145
121 https://doi.org/10.1007/bfb0074076
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/pl00001679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012624304
124 https://doi.org/10.1007/pl00001679
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/pl00009922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011903945
127 https://doi.org/10.1007/pl00009922
128 rdf:type schema:CreativeWork
129 https://app.dimensions.ai/details/publication/pub.1005843858 schema:CreativeWork
130 https://app.dimensions.ai/details/publication/pub.1007174052 schema:CreativeWork
131 https://app.dimensions.ai/details/publication/pub.1085150141 schema:CreativeWork
132 https://doi.org/10.1002/cpa.3160440402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032992596
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/0022-247x(89)90001-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046057743
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/0040-9383(82)90023-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037738931
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/0047-259x(90)90070-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037701492
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.aim.2006.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019349405
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1017/s0143385707000132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053996269
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1090/conm/226/03236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089203872
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1090/memo/0653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059343702
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1090/s0002-9939-08-09419-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059331927
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1090/s0002-9947-01-02930-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016817680
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1090/s0002-9947-1985-0779053-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021418323
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1090/s0894-0347-01-00376-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043961750
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1515/crll.1979.307-308.309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049352484
157 rdf:type schema:CreativeWork
158 https://doi.org/10.4171/jems/74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072318307
159 rdf:type schema:CreativeWork
160 https://doi.org/10.4310/cdm.1997.v1997.n1.a2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072458234
161 rdf:type schema:CreativeWork
162 https://doi.org/10.5802/afst.1059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073135174
163 rdf:type schema:CreativeWork
164 https://www.grid.ac/institutes/grid.464112.4 schema:alternateName Unit of Mathematics, Pure and Applied
165 schema:name UMPA, ENS Lyon, 46 Allée d’Italie, 69007, Lyon, France
166 rdf:type schema:Organization
167 https://www.grid.ac/institutes/grid.6093.c schema:alternateName Scuola Normale Superiore di Pisa
168 schema:name Scuola Normale Superiore, Piazza dei Cavalieri 7, 56100, Pisa, Italy
169 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...