Ontology type: schema:ScholarlyArticle
2008-09-19
AUTHORSShigeki Akiyama, Christiane Frougny, Jacques Sakarovitch
ABSTRACTA new method for representing positive integers and real numbers in a rational base is considered. It amounts to computing the digits from right to left, least significant first. Every integer has a unique expansion. The set of expansions of the integers is not a regular language but nevertheless addition can be performed by a letter-to-letter finite right transducer. Every real number has at least one such expansion and a countable infinite number of them have more than one. We explain how these expansions can be approximated and characterize the expansions of reals that have two expansions.The results that we derive are pertinent on their own and also as they relate to other problems in combinatorics and number theory. A first example is a new interpretation and expansion of the constant K(p) from the so-called “Josephus problem.” More important, these expansions in the base \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tfrac{p} {q} $$\end{document} allow us to make some progress in the problem of the distribution of the fractional part of the powers of rational numbers. More... »
PAGES53
http://scigraph.springernature.com/pub.10.1007/s11856-008-1056-4
DOIhttp://dx.doi.org/10.1007/s11856-008-1056-4
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1020982046
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematics, Niigata University, Niigata, Japan",
"id": "http://www.grid.ac/institutes/grid.260975.f",
"name": [
"Department of Mathematics, Niigata University, Niigata, Japan"
],
"type": "Organization"
},
"familyName": "Akiyama",
"givenName": "Shigeki",
"id": "sg:person.011153327405.03",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011153327405.03"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Universit\u00e9 Paris 8, Paris, France",
"id": "http://www.grid.ac/institutes/grid.15878.33",
"name": [
"LIAFA, UMR 7089 CNRS, Paris, France",
"Universit\u00e9 Paris 8, Paris, France"
],
"type": "Organization"
},
"familyName": "Frougny",
"givenName": "Christiane",
"id": "sg:person.011327100311.34",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011327100311.34"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "LTCI, UMR 5141, CNRS / ENST, 46, rue Barrault, 75634, Paris Cedex 13, France",
"id": "http://www.grid.ac/institutes/grid.464001.7",
"name": [
"LTCI, UMR 5141, CNRS / ENST, 46, rue Barrault, 75634, Paris Cedex 13, France"
],
"type": "Organization"
},
"familyName": "Sakarovitch",
"givenName": "Jacques",
"id": "sg:person.010412054043.09",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010412054043.09"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf02020954",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018173239",
"https://doi.org/10.1007/bf02020954"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01368783",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026715244",
"https://doi.org/10.1007/bf01368783"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02020331",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048516797",
"https://doi.org/10.1007/bf02020331"
],
"type": "CreativeWork"
}
],
"datePublished": "2008-09-19",
"datePublishedReg": "2008-09-19",
"description": "A new method for representing positive integers and real numbers in a rational base is considered. It amounts to computing the digits from right to left, least significant first. Every integer has a unique expansion. The set of expansions of the integers is not a regular language but nevertheless addition can be performed by a letter-to-letter finite right transducer. Every real number has at least one such expansion and a countable infinite number of them have more than one. We explain how these expansions can be approximated and characterize the expansions of reals that have two expansions.The results that we derive are pertinent on their own and also as they relate to other problems in combinatorics and number theory. A first example is a new interpretation and expansion of the constant K(p) from the so-called \u201cJosephus problem.\u201d More important, these expansions in the base \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\n\\tfrac{p}\n{q}\n$$\\end{document} allow us to make some progress in the problem of the distribution of the fractional part of the powers of rational numbers.",
"genre": "article",
"id": "sg:pub.10.1007/s11856-008-1056-4",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136632",
"issn": [
"0021-2172",
"1565-8511"
],
"name": "Israel Journal of Mathematics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "168"
}
],
"keywords": [
"real numbers",
"countable infinite number",
"number theory",
"infinite number",
"rational numbers",
"Base Number System",
"modulo 1",
"positive integer",
"rational base number systems",
"integers",
"fractional part",
"set of expansions",
"number system",
"Josephus problem",
"problem",
"such expansion",
"combinatorics",
"new method",
"expansion",
"theory",
"new interpretation",
"regular languages",
"number",
"unique expansion",
"Real",
"power",
"first example",
"set",
"distribution",
"system",
"rational base",
"letter",
"interpretation",
"results",
"transducer",
"base",
"progress",
"digits",
"part",
"addition",
"language",
"rights",
"example",
"method"
],
"name": "Powers of rationals modulo 1 and rational base number systems",
"pagination": "53",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1020982046"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11856-008-1056-4"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11856-008-1056-4",
"https://app.dimensions.ai/details/publication/pub.1020982046"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T09:59",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_463.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11856-008-1056-4"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11856-008-1056-4'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11856-008-1056-4'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11856-008-1056-4'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11856-008-1056-4'
This table displays all metadata directly associated to this object as RDF triples.
135 TRIPLES
22 PREDICATES
72 URIs
61 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s11856-008-1056-4 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0101 |
3 | ″ | schema:author | Nb0398fe4461b40ef89ccc5aed30ab2f8 |
4 | ″ | schema:citation | sg:pub.10.1007/bf01368783 |
5 | ″ | ″ | sg:pub.10.1007/bf02020331 |
6 | ″ | ″ | sg:pub.10.1007/bf02020954 |
7 | ″ | schema:datePublished | 2008-09-19 |
8 | ″ | schema:datePublishedReg | 2008-09-19 |
9 | ″ | schema:description | A new method for representing positive integers and real numbers in a rational base is considered. It amounts to computing the digits from right to left, least significant first. Every integer has a unique expansion. The set of expansions of the integers is not a regular language but nevertheless addition can be performed by a letter-to-letter finite right transducer. Every real number has at least one such expansion and a countable infinite number of them have more than one. We explain how these expansions can be approximated and characterize the expansions of reals that have two expansions.The results that we derive are pertinent on their own and also as they relate to other problems in combinatorics and number theory. A first example is a new interpretation and expansion of the constant K(p) from the so-called “Josephus problem.” More important, these expansions in the base \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tfrac{p} {q} $$\end{document} allow us to make some progress in the problem of the distribution of the fractional part of the powers of rational numbers. |
10 | ″ | schema:genre | article |
11 | ″ | schema:inLanguage | en |
12 | ″ | schema:isAccessibleForFree | false |
13 | ″ | schema:isPartOf | N253c05a3aa4341858a67b56b70400676 |
14 | ″ | ″ | Nd973746f03d84433aa36ec3711f3b0fd |
15 | ″ | ″ | sg:journal.1136632 |
16 | ″ | schema:keywords | Base Number System |
17 | ″ | ″ | Josephus problem |
18 | ″ | ″ | Real |
19 | ″ | ″ | addition |
20 | ″ | ″ | base |
21 | ″ | ″ | combinatorics |
22 | ″ | ″ | countable infinite number |
23 | ″ | ″ | digits |
24 | ″ | ″ | distribution |
25 | ″ | ″ | example |
26 | ″ | ″ | expansion |
27 | ″ | ″ | first example |
28 | ″ | ″ | fractional part |
29 | ″ | ″ | infinite number |
30 | ″ | ″ | integers |
31 | ″ | ″ | interpretation |
32 | ″ | ″ | language |
33 | ″ | ″ | letter |
34 | ″ | ″ | method |
35 | ″ | ″ | modulo 1 |
36 | ″ | ″ | new interpretation |
37 | ″ | ″ | new method |
38 | ″ | ″ | number |
39 | ″ | ″ | number system |
40 | ″ | ″ | number theory |
41 | ″ | ″ | part |
42 | ″ | ″ | positive integer |
43 | ″ | ″ | power |
44 | ″ | ″ | problem |
45 | ″ | ″ | progress |
46 | ″ | ″ | rational base |
47 | ″ | ″ | rational base number systems |
48 | ″ | ″ | rational numbers |
49 | ″ | ″ | real numbers |
50 | ″ | ″ | regular languages |
51 | ″ | ″ | results |
52 | ″ | ″ | rights |
53 | ″ | ″ | set |
54 | ″ | ″ | set of expansions |
55 | ″ | ″ | such expansion |
56 | ″ | ″ | system |
57 | ″ | ″ | theory |
58 | ″ | ″ | transducer |
59 | ″ | ″ | unique expansion |
60 | ″ | schema:name | Powers of rationals modulo 1 and rational base number systems |
61 | ″ | schema:pagination | 53 |
62 | ″ | schema:productId | Nbf038d3180bb42829e996603fbd749e4 |
63 | ″ | ″ | Ne4622648a2d24f8da0bdd28e87de7507 |
64 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1020982046 |
65 | ″ | ″ | https://doi.org/10.1007/s11856-008-1056-4 |
66 | ″ | schema:sdDatePublished | 2022-05-10T09:59 |
67 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
68 | ″ | schema:sdPublisher | N889c32dae3474ef7a0f7d2720a176e1a |
69 | ″ | schema:url | https://doi.org/10.1007/s11856-008-1056-4 |
70 | ″ | sgo:license | sg:explorer/license/ |
71 | ″ | sgo:sdDataset | articles |
72 | ″ | rdf:type | schema:ScholarlyArticle |
73 | N253c05a3aa4341858a67b56b70400676 | schema:volumeNumber | 168 |
74 | ″ | rdf:type | schema:PublicationVolume |
75 | N2ce93774a23e47eeb42cdfaf578dbf5f | rdf:first | sg:person.011327100311.34 |
76 | ″ | rdf:rest | Nc10c648927dc47559bd95bccb854e7f9 |
77 | N889c32dae3474ef7a0f7d2720a176e1a | schema:name | Springer Nature - SN SciGraph project |
78 | ″ | rdf:type | schema:Organization |
79 | Nb0398fe4461b40ef89ccc5aed30ab2f8 | rdf:first | sg:person.011153327405.03 |
80 | ″ | rdf:rest | N2ce93774a23e47eeb42cdfaf578dbf5f |
81 | Nbf038d3180bb42829e996603fbd749e4 | schema:name | dimensions_id |
82 | ″ | schema:value | pub.1020982046 |
83 | ″ | rdf:type | schema:PropertyValue |
84 | Nc10c648927dc47559bd95bccb854e7f9 | rdf:first | sg:person.010412054043.09 |
85 | ″ | rdf:rest | rdf:nil |
86 | Nd973746f03d84433aa36ec3711f3b0fd | schema:issueNumber | 1 |
87 | ″ | rdf:type | schema:PublicationIssue |
88 | Ne4622648a2d24f8da0bdd28e87de7507 | schema:name | doi |
89 | ″ | schema:value | 10.1007/s11856-008-1056-4 |
90 | ″ | rdf:type | schema:PropertyValue |
91 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
92 | ″ | schema:name | Mathematical Sciences |
93 | ″ | rdf:type | schema:DefinedTerm |
94 | anzsrc-for:0101 | schema:inDefinedTermSet | anzsrc-for: |
95 | ″ | schema:name | Pure Mathematics |
96 | ″ | rdf:type | schema:DefinedTerm |
97 | sg:journal.1136632 | schema:issn | 0021-2172 |
98 | ″ | ″ | 1565-8511 |
99 | ″ | schema:name | Israel Journal of Mathematics |
100 | ″ | schema:publisher | Springer Nature |
101 | ″ | rdf:type | schema:Periodical |
102 | sg:person.010412054043.09 | schema:affiliation | grid-institutes:grid.464001.7 |
103 | ″ | schema:familyName | Sakarovitch |
104 | ″ | schema:givenName | Jacques |
105 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010412054043.09 |
106 | ″ | rdf:type | schema:Person |
107 | sg:person.011153327405.03 | schema:affiliation | grid-institutes:grid.260975.f |
108 | ″ | schema:familyName | Akiyama |
109 | ″ | schema:givenName | Shigeki |
110 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011153327405.03 |
111 | ″ | rdf:type | schema:Person |
112 | sg:person.011327100311.34 | schema:affiliation | grid-institutes:grid.15878.33 |
113 | ″ | schema:familyName | Frougny |
114 | ″ | schema:givenName | Christiane |
115 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011327100311.34 |
116 | ″ | rdf:type | schema:Person |
117 | sg:pub.10.1007/bf01368783 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1026715244 |
118 | ″ | ″ | https://doi.org/10.1007/bf01368783 |
119 | ″ | rdf:type | schema:CreativeWork |
120 | sg:pub.10.1007/bf02020331 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1048516797 |
121 | ″ | ″ | https://doi.org/10.1007/bf02020331 |
122 | ″ | rdf:type | schema:CreativeWork |
123 | sg:pub.10.1007/bf02020954 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1018173239 |
124 | ″ | ″ | https://doi.org/10.1007/bf02020954 |
125 | ″ | rdf:type | schema:CreativeWork |
126 | grid-institutes:grid.15878.33 | schema:alternateName | Université Paris 8, Paris, France |
127 | ″ | schema:name | LIAFA, UMR 7089 CNRS, Paris, France |
128 | ″ | ″ | Université Paris 8, Paris, France |
129 | ″ | rdf:type | schema:Organization |
130 | grid-institutes:grid.260975.f | schema:alternateName | Department of Mathematics, Niigata University, Niigata, Japan |
131 | ″ | schema:name | Department of Mathematics, Niigata University, Niigata, Japan |
132 | ″ | rdf:type | schema:Organization |
133 | grid-institutes:grid.464001.7 | schema:alternateName | LTCI, UMR 5141, CNRS / ENST, 46, rue Barrault, 75634, Paris Cedex 13, France |
134 | ″ | schema:name | LTCI, UMR 5141, CNRS / ENST, 46, rue Barrault, 75634, Paris Cedex 13, France |
135 | ″ | rdf:type | schema:Organization |