Ontology type: schema:ScholarlyArticle Open Access: True
2021-12-14
AUTHORSHuyuan Chen, Alexander Quaas, Feng Zhou
ABSTRACTIn this paper, we present some suitable distributional identities of solutions for nonhomogeneous elliptic equations involving the Hardy—Leray potentials and study qualitative properties of the solutions to the corresponding nonhomogeneous problems in this distributional sense. We address some applications on the nonexistence of some nonhomogeneous problems with the Hardy—Leray potentials and the nonexistence principle eigenvalue with some indefinite potentials. More... »
PAGES305-334
http://scigraph.springernature.com/pub.10.1007/s11854-021-0182-3
DOIhttp://dx.doi.org/10.1007/s11854-021-0182-3
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1143865054
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematics, Jiangxi Normal University, 330022, Nanchang, Jiangxi, PR China",
"id": "http://www.grid.ac/institutes/grid.411862.8",
"name": [
"Department of Mathematics, Jiangxi Normal University, 330022, Nanchang, Jiangxi, PR China"
],
"type": "Organization"
},
"familyName": "Chen",
"givenName": "Huyuan",
"id": "sg:person.010567610433.89",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010567610433.89"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Departamento de Matem\u00e1tica, Universidad T\u00e9cnica Federico Santa Mar\u00eda, Avda. Espa\u00f1a 1680, V-110, Casilla, Valpara\u00edso, Chile",
"id": "http://www.grid.ac/institutes/grid.12148.3e",
"name": [
"Departamento de Matem\u00e1tica, Universidad T\u00e9cnica Federico Santa Mar\u00eda, Avda. Espa\u00f1a 1680, V-110, Casilla, Valpara\u00edso, Chile"
],
"type": "Organization"
},
"familyName": "Quaas",
"givenName": "Alexander",
"id": "sg:person.014316555253.08",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014316555253.08"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Center for Partial Differential Equations, School of Mathematical Sciences, East China Normal University, 200241, Shanghai, PR China",
"id": "http://www.grid.ac/institutes/grid.22069.3f",
"name": [
"Center for Partial Differential Equations, School of Mathematical Sciences, East China Normal University, 200241, Shanghai, PR China"
],
"type": "Organization"
},
"familyName": "Zhou",
"givenName": "Feng",
"id": "sg:person.01230604417.49",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230604417.49"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf02786656",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025938948",
"https://doi.org/10.1007/bf02786656"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11425-018-9447-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1117655689",
"https://doi.org/10.1007/s11425-018-9447-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00220-007-0253-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027914746",
"https://doi.org/10.1007/s00220-007-0253-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1155/2011/917201",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051403278",
"https://doi.org/10.1155/2011/917201"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-12-14",
"datePublishedReg": "2021-12-14",
"description": "In this paper, we present some suitable distributional identities of solutions for nonhomogeneous elliptic equations involving the Hardy\u2014Leray potentials and study qualitative properties of the solutions to the corresponding nonhomogeneous problems in this distributional sense. We address some applications on the nonexistence of some nonhomogeneous problems with the Hardy\u2014Leray potentials and the nonexistence principle eigenvalue with some indefinite potentials.",
"genre": "article",
"id": "sg:pub.10.1007/s11854-021-0182-3",
"inLanguage": "en",
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.9271947",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.8119489",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.9281992",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1136189",
"issn": [
"0021-7670",
"1565-8538"
],
"name": "Journal d'Analyse Math\u00e9matique",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "144"
}
],
"keywords": [
"nonhomogeneous elliptic equation",
"elliptic equations",
"Hardy\u2013Leray potential",
"nonhomogeneous problem",
"corresponding nonhomogeneous problem",
"principle eigenvalue",
"qualitative properties",
"distributional sense",
"distributional identities",
"indefinite potential",
"equations",
"eigenvalues",
"problem",
"solution",
"nonexistence",
"properties",
"applications",
"sense",
"potential",
"identity",
"paper"
],
"name": "On nonhomogeneous elliptic equations with the Hardy\u2014Leray potentials",
"pagination": "305-334",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1143865054"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11854-021-0182-3"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11854-021-0182-3",
"https://app.dimensions.ai/details/publication/pub.1143865054"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:24",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_898.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11854-021-0182-3"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11854-021-0182-3'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11854-021-0182-3'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11854-021-0182-3'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11854-021-0182-3'
This table displays all metadata directly associated to this object as RDF triples.
121 TRIPLES
22 PREDICATES
50 URIs
38 LITERALS
6 BLANK NODES