On nonhomogeneous elliptic equations with the Hardy—Leray potentials View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-12-14

AUTHORS

Huyuan Chen, Alexander Quaas, Feng Zhou

ABSTRACT

In this paper, we present some suitable distributional identities of solutions for nonhomogeneous elliptic equations involving the Hardy—Leray potentials and study qualitative properties of the solutions to the corresponding nonhomogeneous problems in this distributional sense. We address some applications on the nonexistence of some nonhomogeneous problems with the Hardy—Leray potentials and the nonexistence principle eigenvalue with some indefinite potentials. More... »

PAGES

305-334

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11854-021-0182-3

DOI

http://dx.doi.org/10.1007/s11854-021-0182-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1143865054


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Jiangxi Normal University, 330022, Nanchang, Jiangxi, PR China", 
          "id": "http://www.grid.ac/institutes/grid.411862.8", 
          "name": [
            "Department of Mathematics, Jiangxi Normal University, 330022, Nanchang, Jiangxi, PR China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Huyuan", 
        "id": "sg:person.010567610433.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010567610433.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Departamento de Matem\u00e1tica, Universidad T\u00e9cnica Federico Santa Mar\u00eda, Avda. Espa\u00f1a 1680, V-110, Casilla, Valpara\u00edso, Chile", 
          "id": "http://www.grid.ac/institutes/grid.12148.3e", 
          "name": [
            "Departamento de Matem\u00e1tica, Universidad T\u00e9cnica Federico Santa Mar\u00eda, Avda. Espa\u00f1a 1680, V-110, Casilla, Valpara\u00edso, Chile"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Quaas", 
        "givenName": "Alexander", 
        "id": "sg:person.014316555253.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014316555253.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Partial Differential Equations, School of Mathematical Sciences, East China Normal University, 200241, Shanghai, PR China", 
          "id": "http://www.grid.ac/institutes/grid.22069.3f", 
          "name": [
            "Center for Partial Differential Equations, School of Mathematical Sciences, East China Normal University, 200241, Shanghai, PR China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Feng", 
        "id": "sg:person.01230604417.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230604417.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02786656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025938948", 
          "https://doi.org/10.1007/bf02786656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11425-018-9447-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1117655689", 
          "https://doi.org/10.1007/s11425-018-9447-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-007-0253-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027914746", 
          "https://doi.org/10.1007/s00220-007-0253-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1155/2011/917201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051403278", 
          "https://doi.org/10.1155/2011/917201"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-12-14", 
    "datePublishedReg": "2021-12-14", 
    "description": "In this paper, we present some suitable distributional identities of solutions for nonhomogeneous elliptic equations involving the Hardy\u2014Leray potentials and study qualitative properties of the solutions to the corresponding nonhomogeneous problems in this distributional sense. We address some applications on the nonexistence of some nonhomogeneous problems with the Hardy\u2014Leray potentials and the nonexistence principle eigenvalue with some indefinite potentials.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11854-021-0182-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.9271947", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8119489", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.9281992", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136189", 
        "issn": [
          "0021-7670", 
          "1565-8538"
        ], 
        "name": "Journal d'Analyse Math\u00e9matique", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "144"
      }
    ], 
    "keywords": [
      "nonhomogeneous elliptic equation", 
      "elliptic equations", 
      "Hardy\u2013Leray potential", 
      "nonhomogeneous problem", 
      "corresponding nonhomogeneous problem", 
      "principle eigenvalue", 
      "qualitative properties", 
      "distributional sense", 
      "distributional identities", 
      "indefinite potential", 
      "equations", 
      "eigenvalues", 
      "problem", 
      "solution", 
      "nonexistence", 
      "properties", 
      "applications", 
      "sense", 
      "potential", 
      "identity", 
      "paper"
    ], 
    "name": "On nonhomogeneous elliptic equations with the Hardy\u2014Leray potentials", 
    "pagination": "305-334", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1143865054"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11854-021-0182-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11854-021-0182-3", 
      "https://app.dimensions.ai/details/publication/pub.1143865054"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_898.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11854-021-0182-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11854-021-0182-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11854-021-0182-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11854-021-0182-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11854-021-0182-3'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      22 PREDICATES      50 URIs      38 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11854-021-0182-3 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nc1d0c9b618a04d3d85ec9fbc166fa93a
4 schema:citation sg:pub.10.1007/bf02786656
5 sg:pub.10.1007/s00220-007-0253-z
6 sg:pub.10.1007/s11425-018-9447-y
7 sg:pub.10.1155/2011/917201
8 schema:datePublished 2021-12-14
9 schema:datePublishedReg 2021-12-14
10 schema:description In this paper, we present some suitable distributional identities of solutions for nonhomogeneous elliptic equations involving the Hardy—Leray potentials and study qualitative properties of the solutions to the corresponding nonhomogeneous problems in this distributional sense. We address some applications on the nonexistence of some nonhomogeneous problems with the Hardy—Leray potentials and the nonexistence principle eigenvalue with some indefinite potentials.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree true
14 schema:isPartOf N2f5552bfeca94889b2bd71e58b9ac5fb
15 N9392f0e509a345d983cbe09ecb94dc52
16 sg:journal.1136189
17 schema:keywords Hardy–Leray potential
18 applications
19 corresponding nonhomogeneous problem
20 distributional identities
21 distributional sense
22 eigenvalues
23 elliptic equations
24 equations
25 identity
26 indefinite potential
27 nonexistence
28 nonhomogeneous elliptic equation
29 nonhomogeneous problem
30 paper
31 potential
32 principle eigenvalue
33 problem
34 properties
35 qualitative properties
36 sense
37 solution
38 schema:name On nonhomogeneous elliptic equations with the Hardy—Leray potentials
39 schema:pagination 305-334
40 schema:productId N93f8c62704d2471a9833d34cfdb64611
41 Nb792ba1190f5469f856277920a494fdd
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1143865054
43 https://doi.org/10.1007/s11854-021-0182-3
44 schema:sdDatePublished 2022-06-01T22:24
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher Nf1f4ebdfb42a42cdaaf9e44dcac21cba
47 schema:url https://doi.org/10.1007/s11854-021-0182-3
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N2f5552bfeca94889b2bd71e58b9ac5fb schema:volumeNumber 144
52 rdf:type schema:PublicationVolume
53 N3d6229822b8f4d4cae23082fff3b633f rdf:first sg:person.01230604417.49
54 rdf:rest rdf:nil
55 N9392f0e509a345d983cbe09ecb94dc52 schema:issueNumber 1
56 rdf:type schema:PublicationIssue
57 N93f8c62704d2471a9833d34cfdb64611 schema:name doi
58 schema:value 10.1007/s11854-021-0182-3
59 rdf:type schema:PropertyValue
60 Nb792ba1190f5469f856277920a494fdd schema:name dimensions_id
61 schema:value pub.1143865054
62 rdf:type schema:PropertyValue
63 Nc1d0c9b618a04d3d85ec9fbc166fa93a rdf:first sg:person.010567610433.89
64 rdf:rest Ne48d0503100948129f8774038a6b0f44
65 Ne48d0503100948129f8774038a6b0f44 rdf:first sg:person.014316555253.08
66 rdf:rest N3d6229822b8f4d4cae23082fff3b633f
67 Nf1f4ebdfb42a42cdaaf9e44dcac21cba schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
70 schema:name Mathematical Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
73 schema:name Pure Mathematics
74 rdf:type schema:DefinedTerm
75 sg:grant.8119489 http://pending.schema.org/fundedItem sg:pub.10.1007/s11854-021-0182-3
76 rdf:type schema:MonetaryGrant
77 sg:grant.9271947 http://pending.schema.org/fundedItem sg:pub.10.1007/s11854-021-0182-3
78 rdf:type schema:MonetaryGrant
79 sg:grant.9281992 http://pending.schema.org/fundedItem sg:pub.10.1007/s11854-021-0182-3
80 rdf:type schema:MonetaryGrant
81 sg:journal.1136189 schema:issn 0021-7670
82 1565-8538
83 schema:name Journal d'Analyse Mathématique
84 schema:publisher Springer Nature
85 rdf:type schema:Periodical
86 sg:person.010567610433.89 schema:affiliation grid-institutes:grid.411862.8
87 schema:familyName Chen
88 schema:givenName Huyuan
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010567610433.89
90 rdf:type schema:Person
91 sg:person.01230604417.49 schema:affiliation grid-institutes:grid.22069.3f
92 schema:familyName Zhou
93 schema:givenName Feng
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230604417.49
95 rdf:type schema:Person
96 sg:person.014316555253.08 schema:affiliation grid-institutes:grid.12148.3e
97 schema:familyName Quaas
98 schema:givenName Alexander
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014316555253.08
100 rdf:type schema:Person
101 sg:pub.10.1007/bf02786656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025938948
102 https://doi.org/10.1007/bf02786656
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s00220-007-0253-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1027914746
105 https://doi.org/10.1007/s00220-007-0253-z
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s11425-018-9447-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1117655689
108 https://doi.org/10.1007/s11425-018-9447-y
109 rdf:type schema:CreativeWork
110 sg:pub.10.1155/2011/917201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051403278
111 https://doi.org/10.1155/2011/917201
112 rdf:type schema:CreativeWork
113 grid-institutes:grid.12148.3e schema:alternateName Departamento de Matemática, Universidad Técnica Federico Santa María, Avda. España 1680, V-110, Casilla, Valparaíso, Chile
114 schema:name Departamento de Matemática, Universidad Técnica Federico Santa María, Avda. España 1680, V-110, Casilla, Valparaíso, Chile
115 rdf:type schema:Organization
116 grid-institutes:grid.22069.3f schema:alternateName Center for Partial Differential Equations, School of Mathematical Sciences, East China Normal University, 200241, Shanghai, PR China
117 schema:name Center for Partial Differential Equations, School of Mathematical Sciences, East China Normal University, 200241, Shanghai, PR China
118 rdf:type schema:Organization
119 grid-institutes:grid.411862.8 schema:alternateName Department of Mathematics, Jiangxi Normal University, 330022, Nanchang, Jiangxi, PR China
120 schema:name Department of Mathematics, Jiangxi Normal University, 330022, Nanchang, Jiangxi, PR China
121 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...