Spherical means on the Heisenberg group: Stability of a maximal function estimate View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-12-14

AUTHORS

Theresa C. Anderson, Laura Cladek, Malabika Pramanik, Andreas Seeger

ABSTRACT

Consider the surface measure μ on a sphere in a nonvertical hyperplane on the Heisenberg group ℍn, n ≥ 2, and the convolution f * μ. Form the associated maximal function Mf = supt>0 ∣f * μt∣ generated by the automorphic dilations. We use decoupling inequalities due to Wolff and Bourgain—Demeter to prove Lp-boundedness of M in an optimal range. More... »

PAGES

1-28

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11854-021-0171-6

DOI

http://dx.doi.org/10.1007/s11854-021-0171-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1143865314


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Purdue University, 4150 N. University St., 47907, West Lafayette, IN, USA", 
          "id": "http://www.grid.ac/institutes/grid.169077.e", 
          "name": [
            "Department of Mathematics, Purdue University, 4150 N. University St., 47907, West Lafayette, IN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Anderson", 
        "givenName": "Theresa C.", 
        "id": "sg:person.012310407773.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012310407773.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, UCLA, Box 951555, 90095-1555, Los Angeles, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Department of Mathematics, UCLA, Box 951555, 90095-1555, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cladek", 
        "givenName": "Laura", 
        "id": "sg:person.016123237656.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016123237656.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, University of British Columbia, 1984 Mathematics Road, V6T 1Z2, Vancouver, BC, Canada", 
          "id": "http://www.grid.ac/institutes/grid.17091.3e", 
          "name": [
            "Department of Mathematics, University of British Columbia, 1984 Mathematics Road, V6T 1Z2, Vancouver, BC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pramanik", 
        "givenName": "Malabika", 
        "id": "sg:person.014616570203.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014616570203.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, University of Wisconsin, 480 Lincoln Drive, 53706, Madison, WI, USA", 
          "id": "http://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "Department of Mathematics, University of Wisconsin, 480 Lincoln Drive, 53706, Madison, WI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seeger", 
        "givenName": "Andreas", 
        "id": "sg:person.0667317700.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667317700.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02392592", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016339155", 
          "https://doi.org/10.1007/bf02392592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02772226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026072836", 
          "https://doi.org/10.1007/bf02772226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0058946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039679550", 
          "https://doi.org/10.1007/bfb0058946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02796147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037790398", 
          "https://doi.org/10.1007/bf02796147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02786576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015428154", 
          "https://doi.org/10.1007/bf02786576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00001652", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025693568", 
          "https://doi.org/10.1007/pl00001652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12220-020-00388-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1125483649", 
          "https://doi.org/10.1007/s12220-020-00388-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02392052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043785376", 
          "https://doi.org/10.1007/bf02392052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02916713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003294983", 
          "https://doi.org/10.1007/bf02916713"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-12-14", 
    "datePublishedReg": "2021-12-14", 
    "description": "Consider the surface measure \u03bc on a sphere in a nonvertical hyperplane on the Heisenberg group \u210dn, n \u2265 2, and the convolution f * \u03bc. Form the associated maximal function Mf = supt>0 \u2223f * \u03bct\u2223 generated by the automorphic dilations. We use decoupling inequalities due to Wolff and Bourgain\u2014Demeter to prove Lp-boundedness of M in an optimal range.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11854-021-0171-6", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136189", 
        "issn": [
          "0021-7670", 
          "1565-8538"
        ], 
        "name": "Journal d'Analyse Math\u00e9matique", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "145"
      }
    ], 
    "keywords": [
      "group", 
      "dilation", 
      "MF", 
      "optimal range", 
      "Bourgain\u2013Demeter", 
      "estimates", 
      "function estimates", 
      "range", 
      "convolution f", 
      "Wolff", 
      "inequality", 
      "stability", 
      "maximal function estimates", 
      "decoupling inequalities", 
      "Heisenberg group", 
      "sphere", 
      "Lp boundedness", 
      "measure \u03bc", 
      "hyperplane"
    ], 
    "name": "Spherical means on the Heisenberg group: Stability of a maximal function estimate", 
    "pagination": "1-28", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1143865314"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11854-021-0171-6"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11854-021-0171-6", 
      "https://app.dimensions.ai/details/publication/pub.1143865314"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_889.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11854-021-0171-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11854-021-0171-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11854-021-0171-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11854-021-0171-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11854-021-0171-6'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      22 PREDICATES      53 URIs      36 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11854-021-0171-6 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Nf020612cf7304d628088fe4baa17ffc6
4 schema:citation sg:pub.10.1007/bf02392052
5 sg:pub.10.1007/bf02392592
6 sg:pub.10.1007/bf02772226
7 sg:pub.10.1007/bf02786576
8 sg:pub.10.1007/bf02796147
9 sg:pub.10.1007/bf02916713
10 sg:pub.10.1007/bfb0058946
11 sg:pub.10.1007/pl00001652
12 sg:pub.10.1007/s12220-020-00388-0
13 schema:datePublished 2021-12-14
14 schema:datePublishedReg 2021-12-14
15 schema:description Consider the surface measure μ on a sphere in a nonvertical hyperplane on the Heisenberg group ℍn, n ≥ 2, and the convolution f * μ. Form the associated maximal function Mf = supt>0 ∣f * μt∣ generated by the automorphic dilations. We use decoupling inequalities due to Wolff and Bourgain—Demeter to prove Lp-boundedness of M in an optimal range.
16 schema:genre article
17 schema:inLanguage en
18 schema:isAccessibleForFree true
19 schema:isPartOf N22fa7dfd230a4f1eac71367189ca9b8e
20 Nf7b8d8111fce4396b68905b7d98762ac
21 sg:journal.1136189
22 schema:keywords Bourgain–Demeter
23 Heisenberg group
24 Lp boundedness
25 MF
26 Wolff
27 convolution f
28 decoupling inequalities
29 dilation
30 estimates
31 function estimates
32 group
33 hyperplane
34 inequality
35 maximal function estimates
36 measure μ
37 optimal range
38 range
39 sphere
40 stability
41 schema:name Spherical means on the Heisenberg group: Stability of a maximal function estimate
42 schema:pagination 1-28
43 schema:productId N42e25453749f4fc6ba985ffb3bfa86c4
44 N84db1bc0946a4e5fa5fae9d1e512465e
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1143865314
46 https://doi.org/10.1007/s11854-021-0171-6
47 schema:sdDatePublished 2022-06-01T22:24
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N27ba156401d24c29becdac77f102920e
50 schema:url https://doi.org/10.1007/s11854-021-0171-6
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N22fa7dfd230a4f1eac71367189ca9b8e schema:issueNumber 1
55 rdf:type schema:PublicationIssue
56 N27ba156401d24c29becdac77f102920e schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N42e25453749f4fc6ba985ffb3bfa86c4 schema:name dimensions_id
59 schema:value pub.1143865314
60 rdf:type schema:PropertyValue
61 N84db1bc0946a4e5fa5fae9d1e512465e schema:name doi
62 schema:value 10.1007/s11854-021-0171-6
63 rdf:type schema:PropertyValue
64 Na6a2b390f6974dd9a85becc3d8e2c7c3 rdf:first sg:person.016123237656.92
65 rdf:rest Nf84fd8750cc844f0b69731196fccc3d2
66 Na98b1866bf8d41d09b2d893ade214fee rdf:first sg:person.0667317700.79
67 rdf:rest rdf:nil
68 Nf020612cf7304d628088fe4baa17ffc6 rdf:first sg:person.012310407773.52
69 rdf:rest Na6a2b390f6974dd9a85becc3d8e2c7c3
70 Nf7b8d8111fce4396b68905b7d98762ac schema:volumeNumber 145
71 rdf:type schema:PublicationVolume
72 Nf84fd8750cc844f0b69731196fccc3d2 rdf:first sg:person.014616570203.43
73 rdf:rest Na98b1866bf8d41d09b2d893ade214fee
74 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
75 schema:name Mathematical Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
78 schema:name Applied Mathematics
79 rdf:type schema:DefinedTerm
80 sg:journal.1136189 schema:issn 0021-7670
81 1565-8538
82 schema:name Journal d'Analyse Mathématique
83 schema:publisher Springer Nature
84 rdf:type schema:Periodical
85 sg:person.012310407773.52 schema:affiliation grid-institutes:grid.169077.e
86 schema:familyName Anderson
87 schema:givenName Theresa C.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012310407773.52
89 rdf:type schema:Person
90 sg:person.014616570203.43 schema:affiliation grid-institutes:grid.17091.3e
91 schema:familyName Pramanik
92 schema:givenName Malabika
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014616570203.43
94 rdf:type schema:Person
95 sg:person.016123237656.92 schema:affiliation grid-institutes:grid.19006.3e
96 schema:familyName Cladek
97 schema:givenName Laura
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016123237656.92
99 rdf:type schema:Person
100 sg:person.0667317700.79 schema:affiliation grid-institutes:grid.14003.36
101 schema:familyName Seeger
102 schema:givenName Andreas
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667317700.79
104 rdf:type schema:Person
105 sg:pub.10.1007/bf02392052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043785376
106 https://doi.org/10.1007/bf02392052
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/bf02392592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016339155
109 https://doi.org/10.1007/bf02392592
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/bf02772226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026072836
112 https://doi.org/10.1007/bf02772226
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/bf02786576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015428154
115 https://doi.org/10.1007/bf02786576
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/bf02796147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037790398
118 https://doi.org/10.1007/bf02796147
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/bf02916713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003294983
121 https://doi.org/10.1007/bf02916713
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/bfb0058946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039679550
124 https://doi.org/10.1007/bfb0058946
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/pl00001652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025693568
127 https://doi.org/10.1007/pl00001652
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s12220-020-00388-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125483649
130 https://doi.org/10.1007/s12220-020-00388-0
131 rdf:type schema:CreativeWork
132 grid-institutes:grid.14003.36 schema:alternateName Department of Mathematics, University of Wisconsin, 480 Lincoln Drive, 53706, Madison, WI, USA
133 schema:name Department of Mathematics, University of Wisconsin, 480 Lincoln Drive, 53706, Madison, WI, USA
134 rdf:type schema:Organization
135 grid-institutes:grid.169077.e schema:alternateName Department of Mathematics, Purdue University, 4150 N. University St., 47907, West Lafayette, IN, USA
136 schema:name Department of Mathematics, Purdue University, 4150 N. University St., 47907, West Lafayette, IN, USA
137 rdf:type schema:Organization
138 grid-institutes:grid.17091.3e schema:alternateName Department of Mathematics, University of British Columbia, 1984 Mathematics Road, V6T 1Z2, Vancouver, BC, Canada
139 schema:name Department of Mathematics, University of British Columbia, 1984 Mathematics Road, V6T 1Z2, Vancouver, BC, Canada
140 rdf:type schema:Organization
141 grid-institutes:grid.19006.3e schema:alternateName Department of Mathematics, UCLA, Box 951555, 90095-1555, Los Angeles, CA, USA
142 schema:name Department of Mathematics, UCLA, Box 951555, 90095-1555, Los Angeles, CA, USA
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...