Ontology type: schema:ScholarlyArticle Open Access: True
2021-12-14
AUTHORSTheresa C. Anderson, Laura Cladek, Malabika Pramanik, Andreas Seeger
ABSTRACTConsider the surface measure μ on a sphere in a nonvertical hyperplane on the Heisenberg group ℍn, n ≥ 2, and the convolution f * μ. Form the associated maximal function Mf = supt>0 ∣f * μt∣ generated by the automorphic dilations. We use decoupling inequalities due to Wolff and Bourgain—Demeter to prove Lp-boundedness of M in an optimal range. More... »
PAGES1-28
http://scigraph.springernature.com/pub.10.1007/s11854-021-0171-6
DOIhttp://dx.doi.org/10.1007/s11854-021-0171-6
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1143865314
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematics, Purdue University, 4150 N. University St., 47907, West Lafayette, IN, USA",
"id": "http://www.grid.ac/institutes/grid.169077.e",
"name": [
"Department of Mathematics, Purdue University, 4150 N. University St., 47907, West Lafayette, IN, USA"
],
"type": "Organization"
},
"familyName": "Anderson",
"givenName": "Theresa C.",
"id": "sg:person.012310407773.52",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012310407773.52"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics, UCLA, Box 951555, 90095-1555, Los Angeles, CA, USA",
"id": "http://www.grid.ac/institutes/grid.19006.3e",
"name": [
"Department of Mathematics, UCLA, Box 951555, 90095-1555, Los Angeles, CA, USA"
],
"type": "Organization"
},
"familyName": "Cladek",
"givenName": "Laura",
"id": "sg:person.016123237656.92",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016123237656.92"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics, University of British Columbia, 1984 Mathematics Road, V6T 1Z2, Vancouver, BC, Canada",
"id": "http://www.grid.ac/institutes/grid.17091.3e",
"name": [
"Department of Mathematics, University of British Columbia, 1984 Mathematics Road, V6T 1Z2, Vancouver, BC, Canada"
],
"type": "Organization"
},
"familyName": "Pramanik",
"givenName": "Malabika",
"id": "sg:person.014616570203.43",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014616570203.43"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics, University of Wisconsin, 480 Lincoln Drive, 53706, Madison, WI, USA",
"id": "http://www.grid.ac/institutes/grid.14003.36",
"name": [
"Department of Mathematics, University of Wisconsin, 480 Lincoln Drive, 53706, Madison, WI, USA"
],
"type": "Organization"
},
"familyName": "Seeger",
"givenName": "Andreas",
"id": "sg:person.0667317700.79",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667317700.79"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf02392592",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016339155",
"https://doi.org/10.1007/bf02392592"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02772226",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026072836",
"https://doi.org/10.1007/bf02772226"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bfb0058946",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039679550",
"https://doi.org/10.1007/bfb0058946"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02796147",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037790398",
"https://doi.org/10.1007/bf02796147"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02786576",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015428154",
"https://doi.org/10.1007/bf02786576"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/pl00001652",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025693568",
"https://doi.org/10.1007/pl00001652"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s12220-020-00388-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1125483649",
"https://doi.org/10.1007/s12220-020-00388-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02392052",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043785376",
"https://doi.org/10.1007/bf02392052"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02916713",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003294983",
"https://doi.org/10.1007/bf02916713"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-12-14",
"datePublishedReg": "2021-12-14",
"description": "Consider the surface measure \u03bc on a sphere in a nonvertical hyperplane on the Heisenberg group \u210dn, n \u2265 2, and the convolution f * \u03bc. Form the associated maximal function Mf = supt>0 \u2223f * \u03bct\u2223 generated by the automorphic dilations. We use decoupling inequalities due to Wolff and Bourgain\u2014Demeter to prove Lp-boundedness of M in an optimal range.",
"genre": "article",
"id": "sg:pub.10.1007/s11854-021-0171-6",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1136189",
"issn": [
"0021-7670",
"1565-8538"
],
"name": "Journal d'Analyse Math\u00e9matique",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "145"
}
],
"keywords": [
"group",
"dilation",
"MF",
"optimal range",
"Bourgain\u2013Demeter",
"estimates",
"function estimates",
"range",
"convolution f",
"Wolff",
"inequality",
"stability",
"maximal function estimates",
"decoupling inequalities",
"Heisenberg group",
"sphere",
"Lp boundedness",
"measure \u03bc",
"hyperplane"
],
"name": "Spherical means on the Heisenberg group: Stability of a maximal function estimate",
"pagination": "1-28",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1143865314"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11854-021-0171-6"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11854-021-0171-6",
"https://app.dimensions.ai/details/publication/pub.1143865314"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:24",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_889.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11854-021-0171-6"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11854-021-0171-6'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11854-021-0171-6'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11854-021-0171-6'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11854-021-0171-6'
This table displays all metadata directly associated to this object as RDF triples.
143 TRIPLES
22 PREDICATES
53 URIs
36 LITERALS
6 BLANK NODES