Singular systems of linear forms and non-escape of mass in the space of lattices View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-10

AUTHORS

S. Kadyrov, D. Kleinbock, E. Lindenstrauss, G. A. Margulis

ABSTRACT

Singular systems of linear forms were introduced by Khintchine in the 1920s, and it was shown by Dani in the 1980s that they are in one-to-one correspondence with certain divergent orbits of one-parameter diagonal groups on the space of lattices. We give a (conjecturally sharp) upper bound on the Hausdorff dimension of the set of singular systems of linear forms (equivalently, the set of lattices with divergent trajectories) as well as the dimension of the set of lattices with trajectories “escaping on average” (a notion weaker than divergence). This extends work by Cheung, as well as by Chevallier and Cheung. Our method differs considerably from that of Cheung and Chevallier and is based on the technique of integral inequalities developed by Eskin, Margulis and Mozes. More... »

PAGES

253-277

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11854-017-0033-4

DOI

http://dx.doi.org/10.1007/s11854-017-0033-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092979271


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nazarbayev University", 
          "id": "https://www.grid.ac/institutes/grid.428191.7", 
          "name": [
            "Mathematics Department, Nazarbayev University, Astana, Kazakhstan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kadyrov", 
        "givenName": "S.", 
        "id": "sg:person.010343133747.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010343133747.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Brandeis University", 
          "id": "https://www.grid.ac/institutes/grid.253264.4", 
          "name": [
            "Department of Mathematics, Brandeis University, Waltham, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kleinbock", 
        "givenName": "D.", 
        "id": "sg:person.013076036113.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013076036113.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hebrew University of Jerusalem", 
          "id": "https://www.grid.ac/institutes/grid.9619.7", 
          "name": [
            "Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lindenstrauss", 
        "givenName": "E.", 
        "id": "sg:person.01232401074.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232401074.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Mathematics, Yale University, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Margulis", 
        "givenName": "G. A.", 
        "id": "sg:person.01247226110.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247226110.63"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf03014726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013485697", 
          "https://doi.org/10.1007/bf03014726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03014726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013485697", 
          "https://doi.org/10.1007/bf03014726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10711-006-9058-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016883869", 
          "https://doi.org/10.1007/s10711-006-9058-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11856-011-0185-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022370457", 
          "https://doi.org/10.1007/s11856-011-0185-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11856-011-0185-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022370457", 
          "https://doi.org/10.1007/s11856-011-0185-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11856-015-1252-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023749807", 
          "https://doi.org/10.1007/s11856-015-1252-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/crll.1985.359.55", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045679448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0143385710000726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053897955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0143385710000726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053897955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/etds.2015.55", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054015145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/etds.2015.55", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054015145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/00127094-3477021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064411526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/120984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069397459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3934/jmd.2011.5.71", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071740625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4007/annals.2011.173.1.4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071867303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/lem/58-3-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072318859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-5775-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705087", 
          "https://doi.org/10.1007/978-1-4612-5775-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-5775-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705087", 
          "https://doi.org/10.1007/978-1-4612-5775-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-10", 
    "datePublishedReg": "2017-10-01", 
    "description": "Singular systems of linear forms were introduced by Khintchine in the 1920s, and it was shown by Dani in the 1980s that they are in one-to-one correspondence with certain divergent orbits of one-parameter diagonal groups on the space of lattices. We give a (conjecturally sharp) upper bound on the Hausdorff dimension of the set of singular systems of linear forms (equivalently, the set of lattices with divergent trajectories) as well as the dimension of the set of lattices with trajectories \u201cescaping on average\u201d (a notion weaker than divergence). This extends work by Cheung, as well as by Chevallier and Cheung. Our method differs considerably from that of Cheung and Chevallier and is based on the technique of integral inequalities developed by Eskin, Margulis and Mozes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11854-017-0033-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136189", 
        "issn": [
          "0021-7670", 
          "1565-8538"
        ], 
        "name": "Journal d'Analyse Math\u00e9matique", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "133"
      }
    ], 
    "name": "Singular systems of linear forms and non-escape of mass in the space of lattices", 
    "pagination": "253-277", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "54e38a97f813e04168f13c4fcb497f3d10b49f3f423d75f27f802057c0b92868"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11854-017-0033-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092979271"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11854-017-0033-4", 
      "https://app.dimensions.ai/details/publication/pub.1092979271"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000602.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s11854-017-0033-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11854-017-0033-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11854-017-0033-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11854-017-0033-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11854-017-0033-4'


 

This table displays all metadata directly associated to this object as RDF triples.

135 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11854-017-0033-4 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Na475ee4378de4e6592174efb94b05aac
4 schema:citation sg:pub.10.1007/978-1-4612-5775-2
5 sg:pub.10.1007/bf03014726
6 sg:pub.10.1007/s10711-006-9058-z
7 sg:pub.10.1007/s11856-011-0185-3
8 sg:pub.10.1007/s11856-015-1252-y
9 https://doi.org/10.1017/etds.2015.55
10 https://doi.org/10.1017/s0143385710000726
11 https://doi.org/10.1215/00127094-3477021
12 https://doi.org/10.1515/crll.1985.359.55
13 https://doi.org/10.2307/120984
14 https://doi.org/10.3934/jmd.2011.5.71
15 https://doi.org/10.4007/annals.2011.173.1.4
16 https://doi.org/10.4171/lem/58-3-2
17 schema:datePublished 2017-10
18 schema:datePublishedReg 2017-10-01
19 schema:description Singular systems of linear forms were introduced by Khintchine in the 1920s, and it was shown by Dani in the 1980s that they are in one-to-one correspondence with certain divergent orbits of one-parameter diagonal groups on the space of lattices. We give a (conjecturally sharp) upper bound on the Hausdorff dimension of the set of singular systems of linear forms (equivalently, the set of lattices with divergent trajectories) as well as the dimension of the set of lattices with trajectories “escaping on average” (a notion weaker than divergence). This extends work by Cheung, as well as by Chevallier and Cheung. Our method differs considerably from that of Cheung and Chevallier and is based on the technique of integral inequalities developed by Eskin, Margulis and Mozes.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree true
23 schema:isPartOf N20558896d08e49f0b24d97d2ed27bc91
24 Nb7ce97be8af7480cbb4d158bae8268e6
25 sg:journal.1136189
26 schema:name Singular systems of linear forms and non-escape of mass in the space of lattices
27 schema:pagination 253-277
28 schema:productId N1687518cbe7545beb18ad717bc004331
29 N87503b000f234355aa6382e7b4577159
30 Na05b7f2170874eda984ffd769277e4a6
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092979271
32 https://doi.org/10.1007/s11854-017-0033-4
33 schema:sdDatePublished 2019-04-10T19:21
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N6661b30c5b904d36b586b8580042b0b0
36 schema:url http://link.springer.com/10.1007/s11854-017-0033-4
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N1687518cbe7545beb18ad717bc004331 schema:name doi
41 schema:value 10.1007/s11854-017-0033-4
42 rdf:type schema:PropertyValue
43 N20558896d08e49f0b24d97d2ed27bc91 schema:volumeNumber 133
44 rdf:type schema:PublicationVolume
45 N6661b30c5b904d36b586b8580042b0b0 schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N6ad175afd3ff414880ec11320d0b3920 rdf:first sg:person.01232401074.40
48 rdf:rest N8e07f369b198452a86f3726cfcb4475c
49 N87503b000f234355aa6382e7b4577159 schema:name readcube_id
50 schema:value 54e38a97f813e04168f13c4fcb497f3d10b49f3f423d75f27f802057c0b92868
51 rdf:type schema:PropertyValue
52 N8e07f369b198452a86f3726cfcb4475c rdf:first sg:person.01247226110.63
53 rdf:rest rdf:nil
54 Na05b7f2170874eda984ffd769277e4a6 schema:name dimensions_id
55 schema:value pub.1092979271
56 rdf:type schema:PropertyValue
57 Na475ee4378de4e6592174efb94b05aac rdf:first sg:person.010343133747.87
58 rdf:rest Ne27e5d77da5c49948687b2a7e44e01dc
59 Nb7ce97be8af7480cbb4d158bae8268e6 schema:issueNumber 1
60 rdf:type schema:PublicationIssue
61 Ne27e5d77da5c49948687b2a7e44e01dc rdf:first sg:person.013076036113.18
62 rdf:rest N6ad175afd3ff414880ec11320d0b3920
63 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
64 schema:name Mathematical Sciences
65 rdf:type schema:DefinedTerm
66 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
67 schema:name Pure Mathematics
68 rdf:type schema:DefinedTerm
69 sg:journal.1136189 schema:issn 0021-7670
70 1565-8538
71 schema:name Journal d'Analyse Mathématique
72 rdf:type schema:Periodical
73 sg:person.010343133747.87 schema:affiliation https://www.grid.ac/institutes/grid.428191.7
74 schema:familyName Kadyrov
75 schema:givenName S.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010343133747.87
77 rdf:type schema:Person
78 sg:person.01232401074.40 schema:affiliation https://www.grid.ac/institutes/grid.9619.7
79 schema:familyName Lindenstrauss
80 schema:givenName E.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232401074.40
82 rdf:type schema:Person
83 sg:person.01247226110.63 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
84 schema:familyName Margulis
85 schema:givenName G. A.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247226110.63
87 rdf:type schema:Person
88 sg:person.013076036113.18 schema:affiliation https://www.grid.ac/institutes/grid.253264.4
89 schema:familyName Kleinbock
90 schema:givenName D.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013076036113.18
92 rdf:type schema:Person
93 sg:pub.10.1007/978-1-4612-5775-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705087
94 https://doi.org/10.1007/978-1-4612-5775-2
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/bf03014726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013485697
97 https://doi.org/10.1007/bf03014726
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/s10711-006-9058-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1016883869
100 https://doi.org/10.1007/s10711-006-9058-z
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s11856-011-0185-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022370457
103 https://doi.org/10.1007/s11856-011-0185-3
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s11856-015-1252-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1023749807
106 https://doi.org/10.1007/s11856-015-1252-y
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1017/etds.2015.55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054015145
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1017/s0143385710000726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053897955
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1215/00127094-3477021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064411526
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1515/crll.1985.359.55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045679448
115 rdf:type schema:CreativeWork
116 https://doi.org/10.2307/120984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069397459
117 rdf:type schema:CreativeWork
118 https://doi.org/10.3934/jmd.2011.5.71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071740625
119 rdf:type schema:CreativeWork
120 https://doi.org/10.4007/annals.2011.173.1.4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071867303
121 rdf:type schema:CreativeWork
122 https://doi.org/10.4171/lem/58-3-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072318859
123 rdf:type schema:CreativeWork
124 https://www.grid.ac/institutes/grid.253264.4 schema:alternateName Brandeis University
125 schema:name Department of Mathematics, Brandeis University, Waltham, MA, USA
126 rdf:type schema:Organization
127 https://www.grid.ac/institutes/grid.428191.7 schema:alternateName Nazarbayev University
128 schema:name Mathematics Department, Nazarbayev University, Astana, Kazakhstan
129 rdf:type schema:Organization
130 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
131 schema:name Department of Mathematics, Yale University, New Haven, CT, USA
132 rdf:type schema:Organization
133 https://www.grid.ac/institutes/grid.9619.7 schema:alternateName Hebrew University of Jerusalem
134 schema:name Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel
135 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...