Carathéodory-Julia type theorems for operator valued Schur functions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-01

AUTHORS

Vladimir Bolotnikov, Alexander Kheifets

ABSTRACT

We extend the Carathéodory-Julia theorem on angular derivatives as well as its higher order analogue established recently in [4] to the setting of contractive valued functions analytic on the unit disk. Carathéodory-Julia type conditions for an operator valued Schur-class function w are shown to be equivalent to the requirement that every function from the de Branges-Rovnyak space associated with w has certain directional boundary angular derivatives. More... »

PAGES

237-270

References to SciGraph publications

  • 2008-03. Boundary Behavior of Functions in the de Branges–Rovnyak Spaces in COMPLEX ANALYSIS AND OPERATOR THEORY
  • 1989. A Unified Approach to Function Models, and the Transcription Problem in THE GOHBERG ANNIVERSARY COLLECTION
  • 2008. The Higher Order Carathéodory—Julia Theorem and Related Boundary Interpolation Problems in RECENT ADVANCES IN MATRIX AND OPERATOR THEORY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11854-008-0049-x

    DOI

    http://dx.doi.org/10.1007/s11854-008-0049-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1044424990


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "College of William & Mary", 
              "id": "https://www.grid.ac/institutes/grid.264889.9", 
              "name": [
                "Department of Mathematics, The College of William and Mary, 23187-8795, Williamsburg, VA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bolotnikov", 
            "givenName": "Vladimir", 
            "id": "sg:person.01130533744.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130533744.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Massachusetts Lowell", 
              "id": "https://www.grid.ac/institutes/grid.225262.3", 
              "name": [
                "Department of Mathematics, University of Massachusetts Lowell, 01854, Lowell, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kheifets", 
            "givenName": "Alexander", 
            "id": "sg:person.013174220357.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013174220357.75"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.jfa.2006.03.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000646471"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-7643-8539-2_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003857959", 
              "https://doi.org/10.1007/978-3-7643-8539-2_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-7643-8539-2_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003857959", 
              "https://doi.org/10.1007/978-3-7643-8539-2_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9947-1950-0051437-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008121516"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/17476938808814282", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026974848"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-9278-0_23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033629325", 
              "https://doi.org/10.1007/978-3-0348-9278-0_23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11785-007-0028-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050013999", 
              "https://doi.org/10.1007/s11785-007-0028-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-247x(68)90069-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053054790"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/memo/0856", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059343905"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2373326", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069899897"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/cbms/071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098722335"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-01", 
        "datePublishedReg": "2008-01-01", 
        "description": "We extend the Carath\u00e9odory-Julia theorem on angular derivatives as well as its higher order analogue established recently in [4] to the setting of contractive valued functions analytic on the unit disk. Carath\u00e9odory-Julia type conditions for an operator valued Schur-class function w are shown to be equivalent to the requirement that every function from the de Branges-Rovnyak space associated with w has certain directional boundary angular derivatives.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11854-008-0049-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136189", 
            "issn": [
              "0021-7670", 
              "1565-8538"
            ], 
            "name": "Journal d'Analyse Math\u00e9matique", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "106"
          }
        ], 
        "name": "Carath\u00e9odory-Julia type theorems for operator valued Schur functions", 
        "pagination": "237-270", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "d39ce088ec9541e8dbbbbd2f6dae81687820eeb24b4d43cda54b401b64404471"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11854-008-0049-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1044424990"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11854-008-0049-x", 
          "https://app.dimensions.ai/details/publication/pub.1044424990"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T00:21", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000537.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11854-008-0049-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11854-008-0049-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11854-008-0049-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11854-008-0049-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11854-008-0049-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    104 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11854-008-0049-x schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N4602385e23a3462287e30e7cf8b610de
    4 schema:citation sg:pub.10.1007/978-3-0348-9278-0_23
    5 sg:pub.10.1007/978-3-7643-8539-2_5
    6 sg:pub.10.1007/s11785-007-0028-8
    7 https://doi.org/10.1016/0022-247x(68)90069-3
    8 https://doi.org/10.1016/j.jfa.2006.03.016
    9 https://doi.org/10.1080/17476938808814282
    10 https://doi.org/10.1090/cbms/071
    11 https://doi.org/10.1090/memo/0856
    12 https://doi.org/10.1090/s0002-9947-1950-0051437-7
    13 https://doi.org/10.2307/2373326
    14 schema:datePublished 2008-01
    15 schema:datePublishedReg 2008-01-01
    16 schema:description We extend the Carathéodory-Julia theorem on angular derivatives as well as its higher order analogue established recently in [4] to the setting of contractive valued functions analytic on the unit disk. Carathéodory-Julia type conditions for an operator valued Schur-class function w are shown to be equivalent to the requirement that every function from the de Branges-Rovnyak space associated with w has certain directional boundary angular derivatives.
    17 schema:genre research_article
    18 schema:inLanguage en
    19 schema:isAccessibleForFree true
    20 schema:isPartOf N6c29635f0caf4c3e8534438a0ff848aa
    21 Nad3c2f6e302746698afc29e0fdd3422e
    22 sg:journal.1136189
    23 schema:name Carathéodory-Julia type theorems for operator valued Schur functions
    24 schema:pagination 237-270
    25 schema:productId N5a76a6e76cfc4bbb883e4379ab853707
    26 N8e9777d0d4224712890a11b05989accf
    27 Nb481fb9937594138b527d5d391b44a1f
    28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044424990
    29 https://doi.org/10.1007/s11854-008-0049-x
    30 schema:sdDatePublished 2019-04-11T00:21
    31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    32 schema:sdPublisher N899f9db252f84d468b92c57ef9a9beff
    33 schema:url http://link.springer.com/10.1007%2Fs11854-008-0049-x
    34 sgo:license sg:explorer/license/
    35 sgo:sdDataset articles
    36 rdf:type schema:ScholarlyArticle
    37 N4602385e23a3462287e30e7cf8b610de rdf:first sg:person.01130533744.43
    38 rdf:rest N46079060dc9042d69551ecb6fd9b3075
    39 N46079060dc9042d69551ecb6fd9b3075 rdf:first sg:person.013174220357.75
    40 rdf:rest rdf:nil
    41 N5a76a6e76cfc4bbb883e4379ab853707 schema:name doi
    42 schema:value 10.1007/s11854-008-0049-x
    43 rdf:type schema:PropertyValue
    44 N6c29635f0caf4c3e8534438a0ff848aa schema:issueNumber 1
    45 rdf:type schema:PublicationIssue
    46 N899f9db252f84d468b92c57ef9a9beff schema:name Springer Nature - SN SciGraph project
    47 rdf:type schema:Organization
    48 N8e9777d0d4224712890a11b05989accf schema:name readcube_id
    49 schema:value d39ce088ec9541e8dbbbbd2f6dae81687820eeb24b4d43cda54b401b64404471
    50 rdf:type schema:PropertyValue
    51 Nad3c2f6e302746698afc29e0fdd3422e schema:volumeNumber 106
    52 rdf:type schema:PublicationVolume
    53 Nb481fb9937594138b527d5d391b44a1f schema:name dimensions_id
    54 schema:value pub.1044424990
    55 rdf:type schema:PropertyValue
    56 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    57 schema:name Mathematical Sciences
    58 rdf:type schema:DefinedTerm
    59 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    60 schema:name Pure Mathematics
    61 rdf:type schema:DefinedTerm
    62 sg:journal.1136189 schema:issn 0021-7670
    63 1565-8538
    64 schema:name Journal d'Analyse Mathématique
    65 rdf:type schema:Periodical
    66 sg:person.01130533744.43 schema:affiliation https://www.grid.ac/institutes/grid.264889.9
    67 schema:familyName Bolotnikov
    68 schema:givenName Vladimir
    69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130533744.43
    70 rdf:type schema:Person
    71 sg:person.013174220357.75 schema:affiliation https://www.grid.ac/institutes/grid.225262.3
    72 schema:familyName Kheifets
    73 schema:givenName Alexander
    74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013174220357.75
    75 rdf:type schema:Person
    76 sg:pub.10.1007/978-3-0348-9278-0_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033629325
    77 https://doi.org/10.1007/978-3-0348-9278-0_23
    78 rdf:type schema:CreativeWork
    79 sg:pub.10.1007/978-3-7643-8539-2_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003857959
    80 https://doi.org/10.1007/978-3-7643-8539-2_5
    81 rdf:type schema:CreativeWork
    82 sg:pub.10.1007/s11785-007-0028-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050013999
    83 https://doi.org/10.1007/s11785-007-0028-8
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1016/0022-247x(68)90069-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053054790
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1016/j.jfa.2006.03.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000646471
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1080/17476938808814282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026974848
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1090/cbms/071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098722335
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1090/memo/0856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059343905
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1090/s0002-9947-1950-0051437-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008121516
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.2307/2373326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069899897
    98 rdf:type schema:CreativeWork
    99 https://www.grid.ac/institutes/grid.225262.3 schema:alternateName University of Massachusetts Lowell
    100 schema:name Department of Mathematics, University of Massachusetts Lowell, 01854, Lowell, MA, USA
    101 rdf:type schema:Organization
    102 https://www.grid.ac/institutes/grid.264889.9 schema:alternateName College of William & Mary
    103 schema:name Department of Mathematics, The College of William and Mary, 23187-8795, Williamsburg, VA, USA
    104 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...