Assessing and mapping regional coastal vulnerability for port environments and coastal cities View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Komali Kantamaneni, Anthony Gallagher, Xiaoping Du

ABSTRACT

Complex hazards associated with climate change are increasing the vulnerability of urban coastal areas around the globe. This was particularly evident in the UK during the winter of 2013–14 when many coastal areas and infrastructure suffered from unprecedented storms, flooding and erosion. Given the value and importance of urban environments, there is a real need to assess the vulnerability of towns and cities on the United Kingdom (UK) coastline on the basis of the latest projected climate scenarios. Accordingly, a modified Physical Coastal Vulnerability Index (PCVI) was developed in which beach width and coastal slope are considered the most critical physical parameters. The PCVI can be used to rank spatial coastal cells into four classes of vulnerability (from extremely low to high) and to map coastal vulnerability using GIS. As a case study, this approach was applied to the city of Southampton; one of the key port and trade cities in the UK, with results indicating that 38% of the city’s coastline is highly vulnerable, and more than 50% moderately vulnerable. The work demonstrates that the methodological framework can be used as a planning tool for coastal management and, based on the availability of suitable data, can be adapted for estuarine or coastal and port environments without any geographical limits. Newly developed coastal vulnerability maps can be used by coastal engineers, managers and other decision makers to implement rigorous shoreline management planning as well as supporting risk, and disaster management policy and procedures. More... »

PAGES

1-12

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11852-018-0636-7

DOI

http://dx.doi.org/10.1007/s11852-018-0636-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105608921


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Human Geography", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/16", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Studies in Human Society", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Southampton Solent University", 
          "id": "https://www.grid.ac/institutes/grid.31044.32", 
          "name": [
            "Maritime, Technology and Environment Hub, Research and Innovation, Southampton Solent University, SO14 0YN, Southampton, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kantamaneni", 
        "givenName": "Komali", 
        "id": "sg:person.011044003725.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011044003725.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southampton Solent University", 
          "id": "https://www.grid.ac/institutes/grid.31044.32", 
          "name": [
            "Maritime, Technology and Environment Hub, Research and Innovation, Southampton Solent University, SO14 0YN, Southampton, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gallagher", 
        "givenName": "Anthony", 
        "id": "sg:person.01001514351.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001514351.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Remote Sensing and Digital Earth", 
          "id": "https://www.grid.ac/institutes/grid.458443.a", 
          "name": [
            "German Remote Sensing Data Center (DFD), German Aerospace Center (DLR), 82234, Wessling, Germany", 
            "Key Laboratory of Digital Earth, Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences, No.9 Deng Zhuang South Road, Haidian District, 100094, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Du", 
        "givenName": "Xiaoping", 
        "id": "sg:person.016136331117.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016136331117.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ocecoaman.2013.09.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004590694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11069-012-0215-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004682831", 
          "https://doi.org/10.1007/s11069-012-0215-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11852-010-0097-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009160168", 
          "https://doi.org/10.1007/s11852-010-0097-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11852-010-0097-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009160168", 
          "https://doi.org/10.1007/s11852-010-0097-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/w4020430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010637448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1185782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013374950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11852-015-0396-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013852642", 
          "https://doi.org/10.1007/s11852-015-0396-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ocecoaman.2016.03.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014061980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11069-016-2413-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014664681", 
          "https://doi.org/10.1007/s11069-016-2413-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11069-016-2413-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014664681", 
          "https://doi.org/10.1007/s11069-016-2413-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jenvman.2011.06.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015704141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0956247807076960", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019212969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0956247807076960", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019212969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/grl.50758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024548820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gloenvcha.2006.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030203265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12061-014-9110-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030250773", 
          "https://doi.org/10.1007/s12061-014-9110-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12061-014-9110-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030250773", 
          "https://doi.org/10.1007/s12061-014-9110-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3763/ehaz.2010.0052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030860733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2112/05-0534.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031242931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scitotenv.2016.03.150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032432727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jeem.2010.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033589193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ocecoaman.2016.08.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033801826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ocecoaman.2015.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033976542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11027-012-9406-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034597229", 
          "https://doi.org/10.1007/s11027-012-9406-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envsci.2015.04.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036724972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-0182(91)90173-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039732843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-0182(91)90173-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039732843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ocecoaman.2016.08.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040315226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0048-9697(03)00086-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041560127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0048-9697(03)00086-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041560127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11069-015-1597-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044223756", 
          "https://doi.org/10.1007/s11069-015-1597-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.margeo.2007.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044291216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11069-012-0234-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045908999", 
          "https://doi.org/10.1007/s11069-012-0234-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4172/2169-0049.1000145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046223519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1149345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047222897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecss.2011.07.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048066933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecss.2014.05.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050491439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11027-010-9237-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051730464", 
          "https://doi.org/10.1007/s11027-010-9237-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11027-010-9237-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051730464", 
          "https://doi.org/10.1007/s11027-010-9237-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.margeo.2011.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052172069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecss.2013.10.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053538852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0376892900000412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053897164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/nhess-16-463-2016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072677261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/w9120905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093041063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1596/978-0-8213-8866-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099108404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11069-017-3164-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100753521", 
          "https://doi.org/10.1007/s11069-017-3164-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ocecoaman.2018.03.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101885447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2112/1551-5036-36.sp1.487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103180740"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "Complex hazards associated with climate change are increasing the vulnerability of urban coastal areas around the globe. This was particularly evident in the UK during the winter of 2013\u201314 when many coastal areas and infrastructure suffered from unprecedented storms, flooding and erosion. Given the value and importance of urban environments, there is a real need to assess the vulnerability of towns and cities on the United Kingdom (UK) coastline on the basis of the latest projected climate scenarios. Accordingly, a modified Physical Coastal Vulnerability Index (PCVI) was developed in which beach width and coastal slope are considered the most critical physical parameters. The PCVI can be used to rank spatial coastal cells into four classes of vulnerability (from extremely low to high) and to map coastal vulnerability using GIS. As a case study, this approach was applied to the city of Southampton; one of the key port and trade cities in the UK, with results indicating that 38% of the city\u2019s coastline is highly vulnerable, and more than 50% moderately vulnerable. The work demonstrates that the methodological framework can be used as a planning tool for coastal management and, based on the availability of suitable data, can be adapted for estuarine or coastal and port environments without any geographical limits. Newly developed coastal vulnerability maps can be used by coastal engineers, managers and other decision makers to implement rigorous shoreline management planning as well as supporting risk, and disaster management policy and procedures.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11852-018-0636-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7189918", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136116", 
        "issn": [
          "1400-0350", 
          "1874-7841"
        ], 
        "name": "Journal of Coastal Conservation", 
        "type": "Periodical"
      }
    ], 
    "name": "Assessing and mapping regional coastal vulnerability for port environments and coastal cities", 
    "pagination": "1-12", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "44158414f69b6dec9356a1abded171d6e4349ee4db101da40497afad4452be10"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11852-018-0636-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105608921"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11852-018-0636-7", 
      "https://app.dimensions.ai/details/publication/pub.1105608921"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000604.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s11852-018-0636-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11852-018-0636-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11852-018-0636-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11852-018-0636-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11852-018-0636-7'


 

This table displays all metadata directly associated to this object as RDF triples.

208 TRIPLES      21 PREDICATES      66 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11852-018-0636-7 schema:about anzsrc-for:16
2 anzsrc-for:1604
3 schema:author N9d5e289b5a034b419e115f60022d0582
4 schema:citation sg:pub.10.1007/s11027-010-9237-y
5 sg:pub.10.1007/s11027-012-9406-2
6 sg:pub.10.1007/s11069-012-0215-4
7 sg:pub.10.1007/s11069-012-0234-1
8 sg:pub.10.1007/s11069-015-1597-x
9 sg:pub.10.1007/s11069-016-2413-y
10 sg:pub.10.1007/s11069-017-3164-0
11 sg:pub.10.1007/s11852-010-0097-0
12 sg:pub.10.1007/s11852-015-0396-6
13 sg:pub.10.1007/s12061-014-9110-6
14 https://doi.org/10.1002/grl.50758
15 https://doi.org/10.1016/0031-0182(91)90173-o
16 https://doi.org/10.1016/j.ecss.2011.07.012
17 https://doi.org/10.1016/j.ecss.2013.10.010
18 https://doi.org/10.1016/j.ecss.2014.05.014
19 https://doi.org/10.1016/j.envsci.2015.04.010
20 https://doi.org/10.1016/j.gloenvcha.2006.02.006
21 https://doi.org/10.1016/j.jeem.2010.09.003
22 https://doi.org/10.1016/j.jenvman.2011.06.041
23 https://doi.org/10.1016/j.margeo.2007.03.009
24 https://doi.org/10.1016/j.margeo.2011.01.005
25 https://doi.org/10.1016/j.ocecoaman.2013.09.007
26 https://doi.org/10.1016/j.ocecoaman.2015.09.002
27 https://doi.org/10.1016/j.ocecoaman.2016.03.012
28 https://doi.org/10.1016/j.ocecoaman.2016.08.018
29 https://doi.org/10.1016/j.ocecoaman.2016.08.019
30 https://doi.org/10.1016/j.ocecoaman.2018.03.039
31 https://doi.org/10.1016/j.scitotenv.2016.03.150
32 https://doi.org/10.1016/s0048-9697(03)00086-x
33 https://doi.org/10.1017/s0376892900000412
34 https://doi.org/10.1126/science.1149345
35 https://doi.org/10.1126/science.1185782
36 https://doi.org/10.1177/0956247807076960
37 https://doi.org/10.1596/978-0-8213-8866-2
38 https://doi.org/10.2112/05-0534.1
39 https://doi.org/10.2112/1551-5036-36.sp1.487
40 https://doi.org/10.3390/w4020430
41 https://doi.org/10.3390/w9120905
42 https://doi.org/10.3763/ehaz.2010.0052
43 https://doi.org/10.4172/2169-0049.1000145
44 https://doi.org/10.5194/nhess-16-463-2016
45 schema:datePublished 2019-02
46 schema:datePublishedReg 2019-02-01
47 schema:description Complex hazards associated with climate change are increasing the vulnerability of urban coastal areas around the globe. This was particularly evident in the UK during the winter of 2013–14 when many coastal areas and infrastructure suffered from unprecedented storms, flooding and erosion. Given the value and importance of urban environments, there is a real need to assess the vulnerability of towns and cities on the United Kingdom (UK) coastline on the basis of the latest projected climate scenarios. Accordingly, a modified Physical Coastal Vulnerability Index (PCVI) was developed in which beach width and coastal slope are considered the most critical physical parameters. The PCVI can be used to rank spatial coastal cells into four classes of vulnerability (from extremely low to high) and to map coastal vulnerability using GIS. As a case study, this approach was applied to the city of Southampton; one of the key port and trade cities in the UK, with results indicating that 38% of the city’s coastline is highly vulnerable, and more than 50% moderately vulnerable. The work demonstrates that the methodological framework can be used as a planning tool for coastal management and, based on the availability of suitable data, can be adapted for estuarine or coastal and port environments without any geographical limits. Newly developed coastal vulnerability maps can be used by coastal engineers, managers and other decision makers to implement rigorous shoreline management planning as well as supporting risk, and disaster management policy and procedures.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree false
51 schema:isPartOf sg:journal.1136116
52 schema:name Assessing and mapping regional coastal vulnerability for port environments and coastal cities
53 schema:pagination 1-12
54 schema:productId N69a2565a84ec4f28bc4b4abddee5899a
55 N86678b78ab814066b1e00b0290ba74ed
56 Nc2a95e9390704994b212aa9f384d2774
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105608921
58 https://doi.org/10.1007/s11852-018-0636-7
59 schema:sdDatePublished 2019-04-11T02:32
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N0fac662eed86490baef365c7f64694d7
62 schema:url http://link.springer.com/10.1007/s11852-018-0636-7
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N0fac662eed86490baef365c7f64694d7 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N1671274c713c408ca87268dcde96c023 rdf:first sg:person.016136331117.28
69 rdf:rest rdf:nil
70 N69a2565a84ec4f28bc4b4abddee5899a schema:name doi
71 schema:value 10.1007/s11852-018-0636-7
72 rdf:type schema:PropertyValue
73 N86678b78ab814066b1e00b0290ba74ed schema:name dimensions_id
74 schema:value pub.1105608921
75 rdf:type schema:PropertyValue
76 N9d5e289b5a034b419e115f60022d0582 rdf:first sg:person.011044003725.04
77 rdf:rest N9f989ef9461345ddb2c22ce3de921bb2
78 N9f989ef9461345ddb2c22ce3de921bb2 rdf:first sg:person.01001514351.13
79 rdf:rest N1671274c713c408ca87268dcde96c023
80 Nc2a95e9390704994b212aa9f384d2774 schema:name readcube_id
81 schema:value 44158414f69b6dec9356a1abded171d6e4349ee4db101da40497afad4452be10
82 rdf:type schema:PropertyValue
83 anzsrc-for:16 schema:inDefinedTermSet anzsrc-for:
84 schema:name Studies in Human Society
85 rdf:type schema:DefinedTerm
86 anzsrc-for:1604 schema:inDefinedTermSet anzsrc-for:
87 schema:name Human Geography
88 rdf:type schema:DefinedTerm
89 sg:grant.7189918 http://pending.schema.org/fundedItem sg:pub.10.1007/s11852-018-0636-7
90 rdf:type schema:MonetaryGrant
91 sg:journal.1136116 schema:issn 1400-0350
92 1874-7841
93 schema:name Journal of Coastal Conservation
94 rdf:type schema:Periodical
95 sg:person.01001514351.13 schema:affiliation https://www.grid.ac/institutes/grid.31044.32
96 schema:familyName Gallagher
97 schema:givenName Anthony
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001514351.13
99 rdf:type schema:Person
100 sg:person.011044003725.04 schema:affiliation https://www.grid.ac/institutes/grid.31044.32
101 schema:familyName Kantamaneni
102 schema:givenName Komali
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011044003725.04
104 rdf:type schema:Person
105 sg:person.016136331117.28 schema:affiliation https://www.grid.ac/institutes/grid.458443.a
106 schema:familyName Du
107 schema:givenName Xiaoping
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016136331117.28
109 rdf:type schema:Person
110 sg:pub.10.1007/s11027-010-9237-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1051730464
111 https://doi.org/10.1007/s11027-010-9237-y
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s11027-012-9406-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034597229
114 https://doi.org/10.1007/s11027-012-9406-2
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s11069-012-0215-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004682831
117 https://doi.org/10.1007/s11069-012-0215-4
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s11069-012-0234-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045908999
120 https://doi.org/10.1007/s11069-012-0234-1
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s11069-015-1597-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044223756
123 https://doi.org/10.1007/s11069-015-1597-x
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s11069-016-2413-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1014664681
126 https://doi.org/10.1007/s11069-016-2413-y
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s11069-017-3164-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100753521
129 https://doi.org/10.1007/s11069-017-3164-0
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s11852-010-0097-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009160168
132 https://doi.org/10.1007/s11852-010-0097-0
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s11852-015-0396-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013852642
135 https://doi.org/10.1007/s11852-015-0396-6
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s12061-014-9110-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030250773
138 https://doi.org/10.1007/s12061-014-9110-6
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1002/grl.50758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024548820
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/0031-0182(91)90173-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1039732843
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.ecss.2011.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048066933
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.ecss.2013.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053538852
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.ecss.2014.05.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050491439
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.envsci.2015.04.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036724972
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.gloenvcha.2006.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030203265
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.jeem.2010.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033589193
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.jenvman.2011.06.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015704141
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.margeo.2007.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044291216
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.margeo.2011.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052172069
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.ocecoaman.2013.09.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004590694
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.ocecoaman.2015.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033976542
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.ocecoaman.2016.03.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014061980
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.ocecoaman.2016.08.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033801826
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.ocecoaman.2016.08.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040315226
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.ocecoaman.2018.03.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101885447
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.scitotenv.2016.03.150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032432727
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/s0048-9697(03)00086-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041560127
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1017/s0376892900000412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053897164
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1126/science.1149345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047222897
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1126/science.1185782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013374950
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1177/0956247807076960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019212969
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1596/978-0-8213-8866-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099108404
187 rdf:type schema:CreativeWork
188 https://doi.org/10.2112/05-0534.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031242931
189 rdf:type schema:CreativeWork
190 https://doi.org/10.2112/1551-5036-36.sp1.487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103180740
191 rdf:type schema:CreativeWork
192 https://doi.org/10.3390/w4020430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010637448
193 rdf:type schema:CreativeWork
194 https://doi.org/10.3390/w9120905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093041063
195 rdf:type schema:CreativeWork
196 https://doi.org/10.3763/ehaz.2010.0052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030860733
197 rdf:type schema:CreativeWork
198 https://doi.org/10.4172/2169-0049.1000145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046223519
199 rdf:type schema:CreativeWork
200 https://doi.org/10.5194/nhess-16-463-2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072677261
201 rdf:type schema:CreativeWork
202 https://www.grid.ac/institutes/grid.31044.32 schema:alternateName Southampton Solent University
203 schema:name Maritime, Technology and Environment Hub, Research and Innovation, Southampton Solent University, SO14 0YN, Southampton, UK
204 rdf:type schema:Organization
205 https://www.grid.ac/institutes/grid.458443.a schema:alternateName Institute of Remote Sensing and Digital Earth
206 schema:name German Remote Sensing Data Center (DFD), German Aerospace Center (DLR), 82234, Wessling, Germany
207 Key Laboratory of Digital Earth, Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences, No.9 Deng Zhuang South Road, Haidian District, 100094, Beijing, People’s Republic of China
208 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...