Processing high-temperature refractory-metal silicide in-situ composites View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-04

AUTHORS

B. P. Bewlay, M. R. Jackson, P. R. Subramanian

ABSTRACT

High-temperature, refractory-metal, intermetallic, in-situ composites consist of high-strength, niobium-based silicides with a niobium-based metallic toughening phase. A variety of processing schemes have been used to generate these in-situ composites, including solidification and vapor phase processes. Secondary processing, such as forging and extrusion, has also been employed. These composites offer an excellent balance of high-and low-temperature mechanical properties with promising environmental resistance at temperatures above 1,100°C. More... »

PAGES

32-36

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11837-999-0077-8

DOI

http://dx.doi.org/10.1007/s11837-999-0077-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048927395


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "General Electric Company, Corporate Research and Development, USA", 
          "id": "http://www.grid.ac/institutes/grid.418143.b", 
          "name": [
            "General Electric Company, Corporate Research and Development, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bewlay", 
        "givenName": "B. P.", 
        "id": "sg:person.012363452445.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012363452445.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "General Electric Company, Corporate Research and Development, USA", 
          "id": "http://www.grid.ac/institutes/grid.418143.b", 
          "name": [
            "General Electric Company, Corporate Research and Development, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jackson", 
        "givenName": "M. R.", 
        "id": "sg:person.014633307673.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014633307673.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wright Patterson Air Force Base and the Materials and Process Division, Universal Energy Systems, USA", 
          "id": "http://www.grid.ac/institutes/grid.296952.3", 
          "name": [
            "Wright Patterson Air Force Base and the Materials and Process Division, Universal Energy Systems, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Subramanian", 
        "givenName": "P. R.", 
        "id": "sg:person.016235131705.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016235131705.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1557/proc-364-1339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067930393", 
          "https://doi.org/10.1557/proc-364-1339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02595629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017138248", 
          "https://doi.org/10.1007/bf02595629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02657338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027606179", 
          "https://doi.org/10.1007/bf02657338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02667370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037784908", 
          "https://doi.org/10.1007/bf02667370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03221360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042679681", 
          "https://doi.org/10.1007/bf03221360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03221361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019698329", 
          "https://doi.org/10.1007/bf03221361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02914402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034752463", 
          "https://doi.org/10.1007/bf02914402"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-04", 
    "datePublishedReg": "1999-04-01", 
    "description": "High-temperature, refractory-metal, intermetallic, in-situ composites consist of high-strength, niobium-based silicides with a niobium-based metallic toughening phase. A variety of processing schemes have been used to generate these in-situ composites, including solidification and vapor phase processes. Secondary processing, such as forging and extrusion, has also been employed. These composites offer an excellent balance of high-and low-temperature mechanical properties with promising environmental resistance at temperatures above 1,100\u00b0C.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11837-999-0077-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042541", 
        "issn": [
          "1047-4838", 
          "1543-1851"
        ], 
        "name": "JOM", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "51"
      }
    ], 
    "keywords": [
      "situ composites", 
      "low-temperature mechanical properties", 
      "vapor phase process", 
      "toughening phase", 
      "mechanical properties", 
      "composites", 
      "environmental resistance", 
      "excellent balance", 
      "secondary processing", 
      "processing scheme", 
      "silicide", 
      "phase processes", 
      "forging", 
      "solidification", 
      "extrusion", 
      "temperature", 
      "properties", 
      "processing", 
      "resistance", 
      "phase", 
      "process", 
      "scheme", 
      "balance", 
      "variety", 
      "niobium-based silicides", 
      "niobium-based metallic toughening phase", 
      "metallic toughening phase", 
      "promising environmental resistance", 
      "high-temperature refractory-metal silicide", 
      "refractory-metal silicide"
    ], 
    "name": "Processing high-temperature refractory-metal silicide in-situ composites", 
    "pagination": "32-36", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048927395"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11837-999-0077-8"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11837-999-0077-8", 
      "https://app.dimensions.ai/details/publication/pub.1048927395"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_330.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11837-999-0077-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11837-999-0077-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11837-999-0077-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11837-999-0077-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11837-999-0077-8'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      22 PREDICATES      63 URIs      48 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11837-999-0077-8 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N697af6ed179d4639a3fc4a4dd00f52ed
4 schema:citation sg:pub.10.1007/bf02595629
5 sg:pub.10.1007/bf02657338
6 sg:pub.10.1007/bf02667370
7 sg:pub.10.1007/bf02914402
8 sg:pub.10.1007/bf03221360
9 sg:pub.10.1007/bf03221361
10 sg:pub.10.1557/proc-364-1339
11 schema:datePublished 1999-04
12 schema:datePublishedReg 1999-04-01
13 schema:description High-temperature, refractory-metal, intermetallic, in-situ composites consist of high-strength, niobium-based silicides with a niobium-based metallic toughening phase. A variety of processing schemes have been used to generate these in-situ composites, including solidification and vapor phase processes. Secondary processing, such as forging and extrusion, has also been employed. These composites offer an excellent balance of high-and low-temperature mechanical properties with promising environmental resistance at temperatures above 1,100°C.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf Na2978dd2ac7d493097330c33c2425010
18 Nf45083d2595744e9944145e14135eddf
19 sg:journal.1042541
20 schema:keywords balance
21 composites
22 environmental resistance
23 excellent balance
24 extrusion
25 forging
26 high-temperature refractory-metal silicide
27 low-temperature mechanical properties
28 mechanical properties
29 metallic toughening phase
30 niobium-based metallic toughening phase
31 niobium-based silicides
32 phase
33 phase processes
34 process
35 processing
36 processing scheme
37 promising environmental resistance
38 properties
39 refractory-metal silicide
40 resistance
41 scheme
42 secondary processing
43 silicide
44 situ composites
45 solidification
46 temperature
47 toughening phase
48 vapor phase process
49 variety
50 schema:name Processing high-temperature refractory-metal silicide in-situ composites
51 schema:pagination 32-36
52 schema:productId N161dfd5abfd243ab9f5a9bf6dcc0a166
53 Ncc4bbedf9ce84403af3d3380b82770a6
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048927395
55 https://doi.org/10.1007/s11837-999-0077-8
56 schema:sdDatePublished 2021-12-01T19:12
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher Ndce10d71c5a24ee3af24016f9159aa06
59 schema:url https://doi.org/10.1007/s11837-999-0077-8
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N161dfd5abfd243ab9f5a9bf6dcc0a166 schema:name dimensions_id
64 schema:value pub.1048927395
65 rdf:type schema:PropertyValue
66 N167d9cceb6cd483eb5d1cc7804f9c1a2 rdf:first sg:person.016235131705.13
67 rdf:rest rdf:nil
68 N697af6ed179d4639a3fc4a4dd00f52ed rdf:first sg:person.012363452445.25
69 rdf:rest Nf8e0803a6bd14ce7a372c5b5696b39de
70 Na2978dd2ac7d493097330c33c2425010 schema:issueNumber 4
71 rdf:type schema:PublicationIssue
72 Ncc4bbedf9ce84403af3d3380b82770a6 schema:name doi
73 schema:value 10.1007/s11837-999-0077-8
74 rdf:type schema:PropertyValue
75 Ndce10d71c5a24ee3af24016f9159aa06 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 Nf45083d2595744e9944145e14135eddf schema:volumeNumber 51
78 rdf:type schema:PublicationVolume
79 Nf8e0803a6bd14ce7a372c5b5696b39de rdf:first sg:person.014633307673.60
80 rdf:rest N167d9cceb6cd483eb5d1cc7804f9c1a2
81 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
82 schema:name Engineering
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
85 schema:name Materials Engineering
86 rdf:type schema:DefinedTerm
87 sg:journal.1042541 schema:issn 1047-4838
88 1543-1851
89 schema:name JOM
90 schema:publisher Springer Nature
91 rdf:type schema:Periodical
92 sg:person.012363452445.25 schema:affiliation grid-institutes:grid.418143.b
93 schema:familyName Bewlay
94 schema:givenName B. P.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012363452445.25
96 rdf:type schema:Person
97 sg:person.014633307673.60 schema:affiliation grid-institutes:grid.418143.b
98 schema:familyName Jackson
99 schema:givenName M. R.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014633307673.60
101 rdf:type schema:Person
102 sg:person.016235131705.13 schema:affiliation grid-institutes:grid.296952.3
103 schema:familyName Subramanian
104 schema:givenName P. R.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016235131705.13
106 rdf:type schema:Person
107 sg:pub.10.1007/bf02595629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017138248
108 https://doi.org/10.1007/bf02595629
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/bf02657338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027606179
111 https://doi.org/10.1007/bf02657338
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/bf02667370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037784908
114 https://doi.org/10.1007/bf02667370
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/bf02914402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034752463
117 https://doi.org/10.1007/bf02914402
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/bf03221360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042679681
120 https://doi.org/10.1007/bf03221360
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/bf03221361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019698329
123 https://doi.org/10.1007/bf03221361
124 rdf:type schema:CreativeWork
125 sg:pub.10.1557/proc-364-1339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067930393
126 https://doi.org/10.1557/proc-364-1339
127 rdf:type schema:CreativeWork
128 grid-institutes:grid.296952.3 schema:alternateName Wright Patterson Air Force Base and the Materials and Process Division, Universal Energy Systems, USA
129 schema:name Wright Patterson Air Force Base and the Materials and Process Division, Universal Energy Systems, USA
130 rdf:type schema:Organization
131 grid-institutes:grid.418143.b schema:alternateName General Electric Company, Corporate Research and Development, USA
132 schema:name General Electric Company, Corporate Research and Development, USA
133 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...