Effects of Vibration and TiB2 Additions to the Melt on the Structure and Strain-Rate Sensitive Deformation Behavior of an A356 ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2020-09-03

AUTHORS

Marina G. Khmeleva, Ilya A. Zhukov, Gennady V. Garkushin, Andrey S. Savinykh, Anton P. Khrustalyov, Alexander B. Vorozhtsov

ABSTRACT

For the first time, joint experiments have been conducted with samples of A356-TiB2 cast aluminum alloy under quasi-static and plane shock-wave loading. Alloys were obtained by introducing TiB2 particles using a master-alloy, combined with the effect of vibration treatment on the melt in order to fragment the dendritic structure and prevent its branching during solidification. The melt treatment and introduction of TiB2 particles allowed the average grain size to reduce to a third of that of the base cast alloy. During the experiments the strain rate and the shock-wave compression pressure were varied. It was shown that introducing particles affected the strain-rate sensitivity of the alloy. The best elastic–plastic and strength characteristics at increased strain rates of over 0.01 s−1 were demonstrated by an A356 alloy without TiB2 particles. More... »

PAGES

3787-3797

References to SciGraph publications

  • 2015-05-01. Phase-Field Simulation of Orowan Strengthening by Coherent Precipitate Plates in an Aluminum Alloy in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2016-10-12. Theoretical and Experimental Investigations of the Process of Vibration Treatment of Liquid Metals Containing Nanoparticles in JOM
  • 2018-08. Effect of Small Preliminary Deformation on the Evolution of Elastoplastic Waves of Shock Compression in Annealed VT1-0 Titanium in JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS
  • 2017-08-29. Role of ultrasonic treatment, inoculation and solute in the grain refinement of commercial purity aluminium in SCIENTIFIC REPORTS
  • 2018-03-14. Principles of Structure and Phase Composition Formation in Composite Master Alloys of the Al–Ti–B/B4c Systems Used for Aluminum Alloy Modification in RUSSIAN PHYSICS JOURNAL
  • 2018-09-17. Influence of Dispersion Hardening and Severe Plastic Deformation on Structure, Strength and Ductility Behavior of an AA6082 Aluminum Alloy in JOM
  • 2017-09-19. Ex Situ Introduction and Distribution of Nonmetallic Particles in Aluminum Melt: Modeling and Experiment in JOM
  • 2001-03. Distortion of the Wave Profiles in an Elastoplastic Body upon Spalling in JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS
  • 2015-02-18. Effect of structural factors on mechanical properties of the magnesium alloy Ma2-1 under quasi-static and high strain rate deformation conditions in PHYSICS OF THE SOLID STATE
  • 2016-05-09. The Influences of Grain Size and Morphology on the Hot Tearing Susceptibility, Contraction, and Load Behaviors of AA7050 Alloy Inoculated with Al-5Ti-1B Master Alloy in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2015-03-20. The Application of External Fields to the Manufacturing of Novel Dense Composite Master Alloys and Aluminum-Based Nanocomposites in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2018-10. The Influence of the Structure of a Magnesium–Aluminum Nitride Metal-Matrix Composite on the Resistance to Deformation under Quasi-Static and Dynamic Loading in TECHNICAL PHYSICS LETTERS
  • 2010-08. Submicrosecond strength of ultrafine-grained materials in MECHANICS OF SOLIDS
  • 2007-01. Grain Refinement of Aluminum Casting Alloys in INTERNATIONAL JOURNAL OF METALCASTING
  • 2016-01-12. Special Features of the Mechanical Characteristics of Al–Al2O3 Composites Produced By Explosive Compaction of Powders Under Shock-Wave Deformation in RUSSIAN PHYSICS JOURNAL
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11837-020-04339-6

    DOI

    http://dx.doi.org/10.1007/s11837-020-04339-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1130574556


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National Research Tomsk State University, 634050, Tomsk, Russia", 
              "id": "http://www.grid.ac/institutes/grid.77602.34", 
              "name": [
                "National Research Tomsk State University, 634050, Tomsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Khmeleva", 
            "givenName": "Marina G.", 
            "id": "sg:person.016372730651.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016372730651.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Research Tomsk State University, 634050, Tomsk, Russia", 
              "id": "http://www.grid.ac/institutes/grid.77602.34", 
              "name": [
                "National Research Tomsk State University, 634050, Tomsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhukov", 
            "givenName": "Ilya A.", 
            "id": "sg:person.07644463311.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07644463311.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia", 
              "id": "http://www.grid.ac/institutes/grid.418949.9", 
              "name": [
                "Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Garkushin", 
            "givenName": "Gennady V.", 
            "id": "sg:person.010556470263.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010556470263.93"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia", 
              "id": "http://www.grid.ac/institutes/grid.418949.9", 
              "name": [
                "Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Savinykh", 
            "givenName": "Andrey S.", 
            "id": "sg:person.011256041273.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011256041273.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Research Tomsk State University, 634050, Tomsk, Russia", 
              "id": "http://www.grid.ac/institutes/grid.77602.34", 
              "name": [
                "National Research Tomsk State University, 634050, Tomsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Khrustalyov", 
            "givenName": "Anton P.", 
            "id": "sg:person.013301475534.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013301475534.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Research Tomsk State University, 634050, Tomsk, Russia", 
              "id": "http://www.grid.ac/institutes/grid.77602.34", 
              "name": [
                "National Research Tomsk State University, 634050, Tomsk, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vorozhtsov", 
            "givenName": "Alexander B.", 
            "id": "sg:person.0771536125.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771536125.70"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11837-016-2147-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042536435", 
              "https://doi.org/10.1007/s11837-016-2147-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-015-2895-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044879887", 
              "https://doi.org/10.1007/s11661-015-2895-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11182-018-1319-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101532466", 
              "https://doi.org/10.1007/s11182-018-1319-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063783415020109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035435096", 
              "https://doi.org/10.1134/s1063783415020109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063776118080022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107264019", 
              "https://doi.org/10.1134/s1063776118080022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11837-018-3132-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107055429", 
              "https://doi.org/10.1007/s11837-018-3132-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11182-016-0655-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043019345", 
              "https://doi.org/10.1007/s11182-016-0655-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063785018100255", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110670820", 
              "https://doi.org/10.1134/s1063785018100255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11837-017-2594-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091861080", 
              "https://doi.org/10.1007/s11837-017-2594-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-016-3543-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016689761", 
              "https://doi.org/10.1007/s11661-016-3543-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1018804709273", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021322334", 
              "https://doi.org/10.1023/a:1018804709273"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-10354-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091313477", 
              "https://doi.org/10.1038/s41598-017-10354-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3103/s0025654410040114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037106721", 
              "https://doi.org/10.3103/s0025654410040114"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-015-2850-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022718668", 
              "https://doi.org/10.1007/s11661-015-2850-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf03355416", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007550172", 
              "https://doi.org/10.1007/bf03355416"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-09-03", 
        "datePublishedReg": "2020-09-03", 
        "description": "For the first time, joint experiments have been conducted with samples of A356-TiB2 cast aluminum alloy under quasi-static and plane shock-wave loading. Alloys were obtained by introducing TiB2 particles using a master-alloy, combined with the effect of vibration treatment on the melt in order to fragment the dendritic structure and prevent its branching during solidification. The melt treatment and introduction of TiB2 particles allowed the average grain size to reduce to a third of that of the base cast alloy. During the experiments the strain rate and the shock-wave compression pressure were varied. It was shown that introducing particles affected the strain-rate sensitivity of the alloy. The best elastic\u2013plastic and strength characteristics at increased strain rates of over 0.01\u00a0s\u22121 were demonstrated by an A356 alloy without TiB2 particles.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11837-020-04339-6", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6709037", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8718443", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1042541", 
            "issn": [
              "1047-4838", 
              "1543-1851"
            ], 
            "name": "JOM", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "72"
          }
        ], 
        "keywords": [
          "TiB2 particles", 
          "A356 alloy", 
          "strain rate", 
          "cast aluminum alloys", 
          "plane shock wave loading", 
          "strain rate sensitivity", 
          "shock wave loading", 
          "average grain size", 
          "effect of vibration", 
          "TiB2 addition", 
          "aluminum alloy", 
          "cast alloy", 
          "deformation behavior", 
          "melt treatment", 
          "strength characteristics", 
          "alloy", 
          "grain size", 
          "compression pressure", 
          "vibration treatment", 
          "dendritic structure", 
          "joint experiment", 
          "particles", 
          "solidification", 
          "melt", 
          "loading", 
          "vibration", 
          "structure", 
          "experiments", 
          "first time", 
          "pressure", 
          "behavior", 
          "characteristics", 
          "effect", 
          "rate", 
          "size", 
          "order", 
          "addition", 
          "time", 
          "sensitivity", 
          "samples", 
          "introduction", 
          "treatment", 
          "branching", 
          "third"
        ], 
        "name": "Effects of Vibration and TiB2 Additions to the Melt on the Structure and Strain-Rate Sensitive Deformation Behavior of an A356 Alloy", 
        "pagination": "3787-3797", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1130574556"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11837-020-04339-6"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11837-020-04339-6", 
          "https://app.dimensions.ai/details/publication/pub.1130574556"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:37", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_846.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11837-020-04339-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11837-020-04339-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11837-020-04339-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11837-020-04339-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11837-020-04339-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    204 TRIPLES      22 PREDICATES      84 URIs      61 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11837-020-04339-6 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N5b08af9146814223859019420ebcbbe8
    4 schema:citation sg:pub.10.1007/bf03355416
    5 sg:pub.10.1007/s11182-016-0655-5
    6 sg:pub.10.1007/s11182-018-1319-4
    7 sg:pub.10.1007/s11661-015-2850-3
    8 sg:pub.10.1007/s11661-015-2895-3
    9 sg:pub.10.1007/s11661-016-3543-2
    10 sg:pub.10.1007/s11837-016-2147-z
    11 sg:pub.10.1007/s11837-017-2594-1
    12 sg:pub.10.1007/s11837-018-3132-5
    13 sg:pub.10.1023/a:1018804709273
    14 sg:pub.10.1038/s41598-017-10354-6
    15 sg:pub.10.1134/s1063776118080022
    16 sg:pub.10.1134/s1063783415020109
    17 sg:pub.10.1134/s1063785018100255
    18 sg:pub.10.3103/s0025654410040114
    19 schema:datePublished 2020-09-03
    20 schema:datePublishedReg 2020-09-03
    21 schema:description For the first time, joint experiments have been conducted with samples of A356-TiB2 cast aluminum alloy under quasi-static and plane shock-wave loading. Alloys were obtained by introducing TiB2 particles using a master-alloy, combined with the effect of vibration treatment on the melt in order to fragment the dendritic structure and prevent its branching during solidification. The melt treatment and introduction of TiB2 particles allowed the average grain size to reduce to a third of that of the base cast alloy. During the experiments the strain rate and the shock-wave compression pressure were varied. It was shown that introducing particles affected the strain-rate sensitivity of the alloy. The best elastic–plastic and strength characteristics at increased strain rates of over 0.01 s−1 were demonstrated by an A356 alloy without TiB2 particles.
    22 schema:genre article
    23 schema:inLanguage en
    24 schema:isAccessibleForFree false
    25 schema:isPartOf Nbfa91f0b111f41d0b402cf75c4e4b9d4
    26 Nca8bff56888f4079a1eafc64dccfe742
    27 sg:journal.1042541
    28 schema:keywords A356 alloy
    29 TiB2 addition
    30 TiB2 particles
    31 addition
    32 alloy
    33 aluminum alloy
    34 average grain size
    35 behavior
    36 branching
    37 cast alloy
    38 cast aluminum alloys
    39 characteristics
    40 compression pressure
    41 deformation behavior
    42 dendritic structure
    43 effect
    44 effect of vibration
    45 experiments
    46 first time
    47 grain size
    48 introduction
    49 joint experiment
    50 loading
    51 melt
    52 melt treatment
    53 order
    54 particles
    55 plane shock wave loading
    56 pressure
    57 rate
    58 samples
    59 sensitivity
    60 shock wave loading
    61 size
    62 solidification
    63 strain rate
    64 strain rate sensitivity
    65 strength characteristics
    66 structure
    67 third
    68 time
    69 treatment
    70 vibration
    71 vibration treatment
    72 schema:name Effects of Vibration and TiB2 Additions to the Melt on the Structure and Strain-Rate Sensitive Deformation Behavior of an A356 Alloy
    73 schema:pagination 3787-3797
    74 schema:productId N6d37321ab78449138a21a4aa033a0e76
    75 Nee510f308b4b44559c7de64deed455f3
    76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130574556
    77 https://doi.org/10.1007/s11837-020-04339-6
    78 schema:sdDatePublished 2022-05-20T07:37
    79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    80 schema:sdPublisher N229c21c1599d4ba58f785b51931f1e15
    81 schema:url https://doi.org/10.1007/s11837-020-04339-6
    82 sgo:license sg:explorer/license/
    83 sgo:sdDataset articles
    84 rdf:type schema:ScholarlyArticle
    85 N229c21c1599d4ba58f785b51931f1e15 schema:name Springer Nature - SN SciGraph project
    86 rdf:type schema:Organization
    87 N4be602d3ec454a09ba46764d2894ec32 rdf:first sg:person.0771536125.70
    88 rdf:rest rdf:nil
    89 N5b08af9146814223859019420ebcbbe8 rdf:first sg:person.016372730651.43
    90 rdf:rest Nff97154e566f4fa5a036bf4aac97f8f1
    91 N6d37321ab78449138a21a4aa033a0e76 schema:name doi
    92 schema:value 10.1007/s11837-020-04339-6
    93 rdf:type schema:PropertyValue
    94 N722e01772c21447bb6d94e2aaf57aaf6 rdf:first sg:person.010556470263.93
    95 rdf:rest Nd94317edfbc74f31b7ce645203dac41b
    96 N7e7348e4060041d28775f7291acc60de rdf:first sg:person.013301475534.15
    97 rdf:rest N4be602d3ec454a09ba46764d2894ec32
    98 Nbfa91f0b111f41d0b402cf75c4e4b9d4 schema:volumeNumber 72
    99 rdf:type schema:PublicationVolume
    100 Nca8bff56888f4079a1eafc64dccfe742 schema:issueNumber 11
    101 rdf:type schema:PublicationIssue
    102 Nd94317edfbc74f31b7ce645203dac41b rdf:first sg:person.011256041273.55
    103 rdf:rest N7e7348e4060041d28775f7291acc60de
    104 Nee510f308b4b44559c7de64deed455f3 schema:name dimensions_id
    105 schema:value pub.1130574556
    106 rdf:type schema:PropertyValue
    107 Nff97154e566f4fa5a036bf4aac97f8f1 rdf:first sg:person.07644463311.12
    108 rdf:rest N722e01772c21447bb6d94e2aaf57aaf6
    109 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    110 schema:name Engineering
    111 rdf:type schema:DefinedTerm
    112 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    113 schema:name Materials Engineering
    114 rdf:type schema:DefinedTerm
    115 sg:grant.6709037 http://pending.schema.org/fundedItem sg:pub.10.1007/s11837-020-04339-6
    116 rdf:type schema:MonetaryGrant
    117 sg:grant.8718443 http://pending.schema.org/fundedItem sg:pub.10.1007/s11837-020-04339-6
    118 rdf:type schema:MonetaryGrant
    119 sg:journal.1042541 schema:issn 1047-4838
    120 1543-1851
    121 schema:name JOM
    122 schema:publisher Springer Nature
    123 rdf:type schema:Periodical
    124 sg:person.010556470263.93 schema:affiliation grid-institutes:grid.418949.9
    125 schema:familyName Garkushin
    126 schema:givenName Gennady V.
    127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010556470263.93
    128 rdf:type schema:Person
    129 sg:person.011256041273.55 schema:affiliation grid-institutes:grid.418949.9
    130 schema:familyName Savinykh
    131 schema:givenName Andrey S.
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011256041273.55
    133 rdf:type schema:Person
    134 sg:person.013301475534.15 schema:affiliation grid-institutes:grid.77602.34
    135 schema:familyName Khrustalyov
    136 schema:givenName Anton P.
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013301475534.15
    138 rdf:type schema:Person
    139 sg:person.016372730651.43 schema:affiliation grid-institutes:grid.77602.34
    140 schema:familyName Khmeleva
    141 schema:givenName Marina G.
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016372730651.43
    143 rdf:type schema:Person
    144 sg:person.07644463311.12 schema:affiliation grid-institutes:grid.77602.34
    145 schema:familyName Zhukov
    146 schema:givenName Ilya A.
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07644463311.12
    148 rdf:type schema:Person
    149 sg:person.0771536125.70 schema:affiliation grid-institutes:grid.77602.34
    150 schema:familyName Vorozhtsov
    151 schema:givenName Alexander B.
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771536125.70
    153 rdf:type schema:Person
    154 sg:pub.10.1007/bf03355416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007550172
    155 https://doi.org/10.1007/bf03355416
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/s11182-016-0655-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043019345
    158 https://doi.org/10.1007/s11182-016-0655-5
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/s11182-018-1319-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101532466
    161 https://doi.org/10.1007/s11182-018-1319-4
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/s11661-015-2850-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022718668
    164 https://doi.org/10.1007/s11661-015-2850-3
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/s11661-015-2895-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044879887
    167 https://doi.org/10.1007/s11661-015-2895-3
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/s11661-016-3543-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016689761
    170 https://doi.org/10.1007/s11661-016-3543-2
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/s11837-016-2147-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1042536435
    173 https://doi.org/10.1007/s11837-016-2147-z
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/s11837-017-2594-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091861080
    176 https://doi.org/10.1007/s11837-017-2594-1
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/s11837-018-3132-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107055429
    179 https://doi.org/10.1007/s11837-018-3132-5
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1023/a:1018804709273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021322334
    182 https://doi.org/10.1023/a:1018804709273
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1038/s41598-017-10354-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091313477
    185 https://doi.org/10.1038/s41598-017-10354-6
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1134/s1063776118080022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107264019
    188 https://doi.org/10.1134/s1063776118080022
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1134/s1063783415020109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035435096
    191 https://doi.org/10.1134/s1063783415020109
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1134/s1063785018100255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110670820
    194 https://doi.org/10.1134/s1063785018100255
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.3103/s0025654410040114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037106721
    197 https://doi.org/10.3103/s0025654410040114
    198 rdf:type schema:CreativeWork
    199 grid-institutes:grid.418949.9 schema:alternateName Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia
    200 schema:name Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia
    201 rdf:type schema:Organization
    202 grid-institutes:grid.77602.34 schema:alternateName National Research Tomsk State University, 634050, Tomsk, Russia
    203 schema:name National Research Tomsk State University, 634050, Tomsk, Russia
    204 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...