3D Bioprinting of Hybrid Materials for Regenerative Medicine: Implementation in Innovative Small and Medium-Sized Enterprises (SMEs) View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Roxana Mioara Piticescu, Laura Madalina Cursaru, Dan Nastase Ciobota, Sinziana Istrate, Dumitru Ulieru

ABSTRACT

Three-dimensional printing has significant potential as a fabrication method for synthetic scaffolds for regenerative medicine. The advantages of fabricating scaffolds using 3D printing are numerous, including the ability to create complex geometries and porosities that mimic the anatomical structures of organs and tissues. Three-dimensional printing can be used to create orbital implants, which replace the bony cavity surrounding the eye after eye removal. In the present article, an original 3D printing method is developed for the production of three-dimensional structures based on hydroxyapatite and polyurethane diol, which can be further used for the fabrication of orbital implants with interconnected porosity. For this purpose, hybrid nanostructured powders were prepared by hydrothermal synthesis and further used as raw materials for 3D printing of porous structures. Innovative porous 3D structures were tested in vitro and in vivo. The test results showed the vascularization capacity of the 3D implant and remodeling of the tissue. More... »

PAGES

1-11

References to SciGraph publications

Journal

TITLE

JOM

ISSUE

N/A

VOLUME

N/A

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11837-018-3252-y

DOI

http://dx.doi.org/10.1007/s11837-018-3252-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110065385


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "National Research-Development Institute for Non-Ferrous and Rare Metals (INCDMNR-IMNR), 102 Biruintei Blvd, 077145, Pantelimon, Ilfov, Romania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Piticescu", 
        "givenName": "Roxana Mioara", 
        "id": "sg:person.013247606233.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013247606233.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "National Research-Development Institute for Non-Ferrous and Rare Metals (INCDMNR-IMNR), 102 Biruintei Blvd, 077145, Pantelimon, Ilfov, Romania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cursaru", 
        "givenName": "Laura Madalina", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "National Research-Development Institute for Non-Ferrous and Rare Metals (INCDMNR-IMNR), 102 Biruintei Blvd, 077145, Pantelimon, Ilfov, Romania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ciobota", 
        "givenName": "Dan Nastase", 
        "id": "sg:person.010470533556.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010470533556.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carol Davila University of Medicine and Pharmacy", 
          "id": "https://www.grid.ac/institutes/grid.8194.4", 
          "name": [
            "Ophthalmology Department, \u201cCarol Davila\u201d University of Medicine and Pharmacy, 050474, Bucharest, Romania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Istrate", 
        "givenName": "Sinziana", 
        "id": "sg:person.011740650014.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011740650014.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "S.C. SITEX 45 S.R.L, Blvd. Ghica Tei, Bl. 40, Ap. 2, Dept. 2114, 023709, Bucharest, Romania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ulieru", 
        "givenName": "Dumitru", 
        "id": "sg:person.011002535767.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011002535767.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0161-6420(91)32304-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000179464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matchemphys.2015.05.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004237494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jeurceramsoc.2016.05.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004822288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0002-9394(14)71228-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008760629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijom.2015.06.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012104605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-8890(99)00116-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019063755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13036-015-0001-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025455854", 
          "https://doi.org/10.1186/s13036-015-0001-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13036-015-0001-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025455854", 
          "https://doi.org/10.1186/s13036-015-0001-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msec.2016.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028915175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/scs.0b013e3181d80904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030025856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/scs.0b013e3181d80904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030025856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/scs.0b013e3181d80904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030025856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actbio.2016.06.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031161511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10856-013-5005-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043050396", 
          "https://doi.org/10.1007/s10856-013-5005-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-015-9509-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049977949", 
          "https://doi.org/10.1007/s10853-015-9509-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0021998312443396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063622699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0021998312443396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063622699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/kem.240-242.563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072062322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5772/intechopen.70707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099665652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acthis.2018.02.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101335054"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "Three-dimensional printing has significant potential as a fabrication method for synthetic scaffolds for regenerative medicine. The advantages of fabricating scaffolds using 3D printing are numerous, including the ability to create complex geometries and porosities that mimic the anatomical structures of organs and tissues. Three-dimensional printing can be used to create orbital implants, which replace the bony cavity surrounding the eye after eye removal. In the present article, an original 3D printing method is developed for the production of three-dimensional structures based on hydroxyapatite and polyurethane diol, which can be further used for the fabrication of orbital implants with interconnected porosity. For this purpose, hybrid nanostructured powders were prepared by hydrothermal synthesis and further used as raw materials for 3D printing of porous structures. Innovative porous 3D structures were tested in vitro and in vivo. The test results showed the vascularization capacity of the 3D implant and remodeling of the tissue.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11837-018-3252-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042541", 
        "issn": [
          "1047-4838", 
          "1543-1851"
        ], 
        "name": "JOM", 
        "type": "Periodical"
      }
    ], 
    "name": "3D Bioprinting of Hybrid Materials for Regenerative Medicine: Implementation in Innovative Small and Medium-Sized Enterprises (SMEs)", 
    "pagination": "1-11", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "28d88e5099aba25ccad276fc715b0c46952caebc2c385ead7c2c050c2c378c92"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11837-018-3252-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110065385"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11837-018-3252-y", 
      "https://app.dimensions.ai/details/publication/pub.1110065385"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000269_0000000269/records_56802_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11837-018-3252-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11837-018-3252-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11837-018-3252-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11837-018-3252-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11837-018-3252-y'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      21 PREDICATES      41 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11837-018-3252-y schema:about anzsrc-for:09
2 anzsrc-for:0903
3 schema:author N0e45d2adae044851b3411f59c9802db5
4 schema:citation sg:pub.10.1007/s10853-015-9509-8
5 sg:pub.10.1007/s10856-013-5005-3
6 sg:pub.10.1186/s13036-015-0001-4
7 https://doi.org/10.1016/j.actbio.2016.06.024
8 https://doi.org/10.1016/j.acthis.2018.02.010
9 https://doi.org/10.1016/j.ijom.2015.06.024
10 https://doi.org/10.1016/j.jeurceramsoc.2016.05.025
11 https://doi.org/10.1016/j.matchemphys.2015.05.018
12 https://doi.org/10.1016/j.msec.2016.08.003
13 https://doi.org/10.1016/s0002-9394(14)71228-0
14 https://doi.org/10.1016/s0161-6420(91)32304-2
15 https://doi.org/10.1016/s0921-8890(99)00116-5
16 https://doi.org/10.1097/scs.0b013e3181d80904
17 https://doi.org/10.1177/0021998312443396
18 https://doi.org/10.4028/www.scientific.net/kem.240-242.563
19 https://doi.org/10.5772/intechopen.70707
20 schema:datePublished 2019-02
21 schema:datePublishedReg 2019-02-01
22 schema:description Three-dimensional printing has significant potential as a fabrication method for synthetic scaffolds for regenerative medicine. The advantages of fabricating scaffolds using 3D printing are numerous, including the ability to create complex geometries and porosities that mimic the anatomical structures of organs and tissues. Three-dimensional printing can be used to create orbital implants, which replace the bony cavity surrounding the eye after eye removal. In the present article, an original 3D printing method is developed for the production of three-dimensional structures based on hydroxyapatite and polyurethane diol, which can be further used for the fabrication of orbital implants with interconnected porosity. For this purpose, hybrid nanostructured powders were prepared by hydrothermal synthesis and further used as raw materials for 3D printing of porous structures. Innovative porous 3D structures were tested in vitro and in vivo. The test results showed the vascularization capacity of the 3D implant and remodeling of the tissue.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf sg:journal.1042541
27 schema:name 3D Bioprinting of Hybrid Materials for Regenerative Medicine: Implementation in Innovative Small and Medium-Sized Enterprises (SMEs)
28 schema:pagination 1-11
29 schema:productId N021b81d4c90842518b2f4f9828837d3d
30 N5884db1920a54d95849f37af351cbf42
31 Nbb9e94d29b7b4614b0d4a26e8d35ed03
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110065385
33 https://doi.org/10.1007/s11837-018-3252-y
34 schema:sdDatePublished 2019-04-11T08:11
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher Nfd60c8caac214fb3b6032ce5d3e8858f
37 schema:url https://link.springer.com/10.1007%2Fs11837-018-3252-y
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N021b81d4c90842518b2f4f9828837d3d schema:name readcube_id
42 schema:value 28d88e5099aba25ccad276fc715b0c46952caebc2c385ead7c2c050c2c378c92
43 rdf:type schema:PropertyValue
44 N0e45d2adae044851b3411f59c9802db5 rdf:first sg:person.013247606233.51
45 rdf:rest Nbf42a4d2c7ed4aa4b4c8b7b9ee3b6f06
46 N1e1852867eb7428d8cf4ef3e12c56ef9 schema:name S.C. SITEX 45 S.R.L, Blvd. Ghica Tei, Bl. 40, Ap. 2, Dept. 2114, 023709, Bucharest, Romania
47 rdf:type schema:Organization
48 N3450c6266f994fe5af63d9376b0c8e31 rdf:first sg:person.010470533556.74
49 rdf:rest N3fa3c2d4f1a44acdbd2d69c6abca73b5
50 N3fa3c2d4f1a44acdbd2d69c6abca73b5 rdf:first sg:person.011740650014.92
51 rdf:rest Nc80c36dcccf44487b9c13f3db7061252
52 N5884db1920a54d95849f37af351cbf42 schema:name doi
53 schema:value 10.1007/s11837-018-3252-y
54 rdf:type schema:PropertyValue
55 Nb53a0101d3a0460393bf45eec3f86ba1 schema:affiliation Ne906a439838a4de4802bebb6f965dc5f
56 schema:familyName Cursaru
57 schema:givenName Laura Madalina
58 rdf:type schema:Person
59 Nbb9e94d29b7b4614b0d4a26e8d35ed03 schema:name dimensions_id
60 schema:value pub.1110065385
61 rdf:type schema:PropertyValue
62 Nbf42a4d2c7ed4aa4b4c8b7b9ee3b6f06 rdf:first Nb53a0101d3a0460393bf45eec3f86ba1
63 rdf:rest N3450c6266f994fe5af63d9376b0c8e31
64 Nc80c36dcccf44487b9c13f3db7061252 rdf:first sg:person.011002535767.26
65 rdf:rest rdf:nil
66 Ne906a439838a4de4802bebb6f965dc5f schema:name National Research-Development Institute for Non-Ferrous and Rare Metals (INCDMNR-IMNR), 102 Biruintei Blvd, 077145, Pantelimon, Ilfov, Romania
67 rdf:type schema:Organization
68 Nef8c273880704d53bd5d4a648f3a1210 schema:name National Research-Development Institute for Non-Ferrous and Rare Metals (INCDMNR-IMNR), 102 Biruintei Blvd, 077145, Pantelimon, Ilfov, Romania
69 rdf:type schema:Organization
70 Nf0aed6ccad914d7398fb17a251a9a958 schema:name National Research-Development Institute for Non-Ferrous and Rare Metals (INCDMNR-IMNR), 102 Biruintei Blvd, 077145, Pantelimon, Ilfov, Romania
71 rdf:type schema:Organization
72 Nfd60c8caac214fb3b6032ce5d3e8858f schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
75 schema:name Engineering
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
78 schema:name Biomedical Engineering
79 rdf:type schema:DefinedTerm
80 sg:journal.1042541 schema:issn 1047-4838
81 1543-1851
82 schema:name JOM
83 rdf:type schema:Periodical
84 sg:person.010470533556.74 schema:affiliation Nf0aed6ccad914d7398fb17a251a9a958
85 schema:familyName Ciobota
86 schema:givenName Dan Nastase
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010470533556.74
88 rdf:type schema:Person
89 sg:person.011002535767.26 schema:affiliation N1e1852867eb7428d8cf4ef3e12c56ef9
90 schema:familyName Ulieru
91 schema:givenName Dumitru
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011002535767.26
93 rdf:type schema:Person
94 sg:person.011740650014.92 schema:affiliation https://www.grid.ac/institutes/grid.8194.4
95 schema:familyName Istrate
96 schema:givenName Sinziana
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011740650014.92
98 rdf:type schema:Person
99 sg:person.013247606233.51 schema:affiliation Nef8c273880704d53bd5d4a648f3a1210
100 schema:familyName Piticescu
101 schema:givenName Roxana Mioara
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013247606233.51
103 rdf:type schema:Person
104 sg:pub.10.1007/s10853-015-9509-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049977949
105 https://doi.org/10.1007/s10853-015-9509-8
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s10856-013-5005-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043050396
108 https://doi.org/10.1007/s10856-013-5005-3
109 rdf:type schema:CreativeWork
110 sg:pub.10.1186/s13036-015-0001-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025455854
111 https://doi.org/10.1186/s13036-015-0001-4
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.actbio.2016.06.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031161511
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.acthis.2018.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101335054
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.ijom.2015.06.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012104605
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.jeurceramsoc.2016.05.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004822288
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.matchemphys.2015.05.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004237494
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.msec.2016.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028915175
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/s0002-9394(14)71228-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008760629
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/s0161-6420(91)32304-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000179464
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/s0921-8890(99)00116-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019063755
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1097/scs.0b013e3181d80904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030025856
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1177/0021998312443396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063622699
134 rdf:type schema:CreativeWork
135 https://doi.org/10.4028/www.scientific.net/kem.240-242.563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072062322
136 rdf:type schema:CreativeWork
137 https://doi.org/10.5772/intechopen.70707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099665652
138 rdf:type schema:CreativeWork
139 https://www.grid.ac/institutes/grid.8194.4 schema:alternateName Carol Davila University of Medicine and Pharmacy
140 schema:name Ophthalmology Department, “Carol Davila” University of Medicine and Pharmacy, 050474, Bucharest, Romania
141 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...