Ex Situ Introduction and Distribution of Nonmetallic Particles in Aluminum Melt: Modeling and Experiment View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-09-19

AUTHORS

S. Vorozhtsov, L. Minkov, V. Dammer, A. Khrustalyov, I. Zhukov, V. Promakhov, A. Vorozhtsov, M. Khmeleva

ABSTRACT

Simulation results for mechanical mixing of aluminum melt using a mixing device are presented. It is found that an increase in the rotational velocity of the vortex device leads to intensive growth of turbulent diffusion in the liquid metal. Small vortices, although energetically weaker, can provide uniform mixing, creating regions of uniformity of several tens of microns. Experimental studies showed that use of a special mechanical mixing device enables injection of course titanium diboride particles and leads to significantly improved microstructure (reduction in average grain size from 900 μm to 400 μm) and mechanical properties of aluminum alloy A356. In particular, introduction of 0.2 wt.% titanium diboride particles using the vortex device leads to an increase in yield strength (from 15 MPa to 65 MPa) and ultimate tensile strength (from 140 MPa to 220 MPa) while preserving the ductility of the alloy (~4.5%) . More... »

PAGES

2653-2657

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11837-017-2594-1

DOI

http://dx.doi.org/10.1007/s11837-017-2594-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091861080


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Strength Physics and Materials Science SB RAS, 634021, Tomsk, Russian Federation", 
          "id": "http://www.grid.ac/institutes/grid.467103.7", 
          "name": [
            "National Research Tomsk State University, 634050, Tomsk, Russian Federation", 
            "Institute of Strength Physics and Materials Science SB RAS, 634021, Tomsk, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vorozhtsov", 
        "givenName": "S.", 
        "id": "sg:person.010552241521.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010552241521.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research Tomsk State University, 634050, Tomsk, Russian Federation", 
          "id": "http://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "National Research Tomsk State University, 634050, Tomsk, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Minkov", 
        "givenName": "L.", 
        "id": "sg:person.010442007123.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010442007123.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research Tomsk State University, 634050, Tomsk, Russian Federation", 
          "id": "http://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "National Research Tomsk State University, 634050, Tomsk, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dammer", 
        "givenName": "V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research Tomsk State University, 634050, Tomsk, Russian Federation", 
          "id": "http://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "National Research Tomsk State University, 634050, Tomsk, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khrustalyov", 
        "givenName": "A.", 
        "id": "sg:person.013301475534.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013301475534.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Problems for Chemical and Energetic Technologies SB RAS, 659322, Biysk, Russian Federation", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "National Research Tomsk State University, 634050, Tomsk, Russian Federation", 
            "Institute of Problems for Chemical and Energetic Technologies SB RAS, 659322, Biysk, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhukov", 
        "givenName": "I.", 
        "id": "sg:person.07644463311.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07644463311.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Problems for Chemical and Energetic Technologies SB RAS, 659322, Biysk, Russian Federation", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "National Research Tomsk State University, 634050, Tomsk, Russian Federation", 
            "Institute of Problems for Chemical and Energetic Technologies SB RAS, 659322, Biysk, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Promakhov", 
        "givenName": "V.", 
        "id": "sg:person.015064233310.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015064233310.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Problems for Chemical and Energetic Technologies SB RAS, 659322, Biysk, Russian Federation", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "National Research Tomsk State University, 634050, Tomsk, Russian Federation", 
            "Institute of Problems for Chemical and Energetic Technologies SB RAS, 659322, Biysk, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vorozhtsov", 
        "givenName": "A.", 
        "id": "sg:person.0771536125.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771536125.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research Tomsk State University, 634050, Tomsk, Russian Federation", 
          "id": "http://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "National Research Tomsk State University, 634050, Tomsk, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khmeleva", 
        "givenName": "M.", 
        "id": "sg:person.016372730651.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016372730651.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0040579514020146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051940629", 
          "https://doi.org/10.1134/s0040579514020146"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-09-19", 
    "datePublishedReg": "2017-09-19", 
    "description": "Abstract\nSimulation results for mechanical mixing of aluminum melt using a mixing device are presented. It is found that an increase in the rotational velocity of the vortex device leads to intensive growth of turbulent diffusion in the liquid metal. Small vortices, although energetically weaker, can provide uniform mixing, creating regions of uniformity of several tens of microns. Experimental studies showed that use of a special mechanical mixing device enables injection of course titanium diboride particles and leads to significantly improved microstructure (reduction in average grain size from 900\u00a0\u03bcm to 400\u00a0\u03bcm) and mechanical properties of aluminum alloy A356. In particular, introduction of 0.2 wt.% titanium diboride particles using the vortex device leads to an increase in yield strength (from 15\u00a0MPa to 65\u00a0MPa) and ultimate tensile strength (from 140\u00a0MPa to 220\u00a0MPa) while preserving the ductility of the alloy (~4.5%)\n.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11837-017-2594-1", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6709037", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1042541", 
        "issn": [
          "1047-4838", 
          "1543-1851"
        ], 
        "name": "JOM", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "69"
      }
    ], 
    "keywords": [
      "aluminum melt", 
      "vortex devices", 
      "titanium diboride particles", 
      "ex-situ introduction", 
      "aluminum alloy A356", 
      "tens of microns", 
      "diboride particles", 
      "alloy A356", 
      "yield strength", 
      "nonmetallic particles", 
      "titanium diboride", 
      "mechanical properties", 
      "region of uniformity", 
      "tensile strength", 
      "mechanical mixing", 
      "liquid metal", 
      "turbulent diffusion", 
      "uniform mixing", 
      "small vortices", 
      "situ introduction", 
      "simulation results", 
      "experimental study", 
      "devices", 
      "rotational velocity", 
      "mixing", 
      "particles", 
      "A356", 
      "ductility", 
      "strength", 
      "alloy", 
      "microstructure", 
      "melt", 
      "diboride", 
      "vortices", 
      "velocity", 
      "uniformity", 
      "wt", 
      "metals", 
      "diffusion", 
      "microns", 
      "modeling", 
      "properties", 
      "tens", 
      "increase", 
      "experiments", 
      "distribution", 
      "intensive growth", 
      "introduction", 
      "results", 
      "use", 
      "region", 
      "growth", 
      "injection", 
      "study"
    ], 
    "name": "Ex Situ Introduction and Distribution of Nonmetallic Particles in Aluminum Melt: Modeling and Experiment", 
    "pagination": "2653-2657", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091861080"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11837-017-2594-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11837-017-2594-1", 
      "https://app.dimensions.ai/details/publication/pub.1091861080"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_732.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11837-017-2594-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11837-017-2594-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11837-017-2594-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11837-017-2594-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11837-017-2594-1'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      22 PREDICATES      81 URIs      71 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11837-017-2594-1 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 anzsrc-for:0915
4 schema:author Na0c52255033e4478b78ff59fc3146c68
5 schema:citation sg:pub.10.1134/s0040579514020146
6 schema:datePublished 2017-09-19
7 schema:datePublishedReg 2017-09-19
8 schema:description Abstract Simulation results for mechanical mixing of aluminum melt using a mixing device are presented. It is found that an increase in the rotational velocity of the vortex device leads to intensive growth of turbulent diffusion in the liquid metal. Small vortices, although energetically weaker, can provide uniform mixing, creating regions of uniformity of several tens of microns. Experimental studies showed that use of a special mechanical mixing device enables injection of course titanium diboride particles and leads to significantly improved microstructure (reduction in average grain size from 900 μm to 400 μm) and mechanical properties of aluminum alloy A356. In particular, introduction of 0.2 wt.% titanium diboride particles using the vortex device leads to an increase in yield strength (from 15 MPa to 65 MPa) and ultimate tensile strength (from 140 MPa to 220 MPa) while preserving the ductility of the alloy (~4.5%) .
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf Nac53c14cadb04855b05ee31d5b7f8b90
13 Ne9de5d424da64661b502ca831b677c74
14 sg:journal.1042541
15 schema:keywords A356
16 alloy
17 alloy A356
18 aluminum alloy A356
19 aluminum melt
20 devices
21 diboride
22 diboride particles
23 diffusion
24 distribution
25 ductility
26 ex-situ introduction
27 experimental study
28 experiments
29 growth
30 increase
31 injection
32 intensive growth
33 introduction
34 liquid metal
35 mechanical mixing
36 mechanical properties
37 melt
38 metals
39 microns
40 microstructure
41 mixing
42 modeling
43 nonmetallic particles
44 particles
45 properties
46 region
47 region of uniformity
48 results
49 rotational velocity
50 simulation results
51 situ introduction
52 small vortices
53 strength
54 study
55 tens
56 tens of microns
57 tensile strength
58 titanium diboride
59 titanium diboride particles
60 turbulent diffusion
61 uniform mixing
62 uniformity
63 use
64 velocity
65 vortex devices
66 vortices
67 wt
68 yield strength
69 schema:name Ex Situ Introduction and Distribution of Nonmetallic Particles in Aluminum Melt: Modeling and Experiment
70 schema:pagination 2653-2657
71 schema:productId N5b56935be53c49088bbc51ea3bd0d425
72 Na4bda28fd61c4226b22f0fcff327faa8
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091861080
74 https://doi.org/10.1007/s11837-017-2594-1
75 schema:sdDatePublished 2022-05-20T07:33
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher N32492421e4be426c982e10f25702e88b
78 schema:url https://doi.org/10.1007/s11837-017-2594-1
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N0622bb59db2e49858f15d73bcf487552 schema:affiliation grid-institutes:grid.77602.34
83 schema:familyName Dammer
84 schema:givenName V.
85 rdf:type schema:Person
86 N166409e8ed9a40d1a47678a39658d6db rdf:first N0622bb59db2e49858f15d73bcf487552
87 rdf:rest N57ebb31b80134e1b9cd4e4fb032364da
88 N1c36e060ce1e4522b0301970232916e1 rdf:first sg:person.0771536125.70
89 rdf:rest N8ee9576bca9e4cd3a89da05fcc666d04
90 N27e28c2862b0494eb6e3ca86f39b7828 rdf:first sg:person.07644463311.12
91 rdf:rest Nb8202526b6aa406c960b94f7efc7bce2
92 N32492421e4be426c982e10f25702e88b schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N57ebb31b80134e1b9cd4e4fb032364da rdf:first sg:person.013301475534.15
95 rdf:rest N27e28c2862b0494eb6e3ca86f39b7828
96 N5b56935be53c49088bbc51ea3bd0d425 schema:name doi
97 schema:value 10.1007/s11837-017-2594-1
98 rdf:type schema:PropertyValue
99 N6e082a69831647c5b3e2093b6f90ef90 rdf:first sg:person.010442007123.17
100 rdf:rest N166409e8ed9a40d1a47678a39658d6db
101 N8ee9576bca9e4cd3a89da05fcc666d04 rdf:first sg:person.016372730651.43
102 rdf:rest rdf:nil
103 Na0c52255033e4478b78ff59fc3146c68 rdf:first sg:person.010552241521.39
104 rdf:rest N6e082a69831647c5b3e2093b6f90ef90
105 Na4bda28fd61c4226b22f0fcff327faa8 schema:name dimensions_id
106 schema:value pub.1091861080
107 rdf:type schema:PropertyValue
108 Nac53c14cadb04855b05ee31d5b7f8b90 schema:volumeNumber 69
109 rdf:type schema:PublicationVolume
110 Nb8202526b6aa406c960b94f7efc7bce2 rdf:first sg:person.015064233310.35
111 rdf:rest N1c36e060ce1e4522b0301970232916e1
112 Ne9de5d424da64661b502ca831b677c74 schema:issueNumber 12
113 rdf:type schema:PublicationIssue
114 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
115 schema:name Engineering
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
118 schema:name Materials Engineering
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
121 schema:name Interdisciplinary Engineering
122 rdf:type schema:DefinedTerm
123 sg:grant.6709037 http://pending.schema.org/fundedItem sg:pub.10.1007/s11837-017-2594-1
124 rdf:type schema:MonetaryGrant
125 sg:journal.1042541 schema:issn 1047-4838
126 1543-1851
127 schema:name JOM
128 schema:publisher Springer Nature
129 rdf:type schema:Periodical
130 sg:person.010442007123.17 schema:affiliation grid-institutes:grid.77602.34
131 schema:familyName Minkov
132 schema:givenName L.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010442007123.17
134 rdf:type schema:Person
135 sg:person.010552241521.39 schema:affiliation grid-institutes:grid.467103.7
136 schema:familyName Vorozhtsov
137 schema:givenName S.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010552241521.39
139 rdf:type schema:Person
140 sg:person.013301475534.15 schema:affiliation grid-institutes:grid.77602.34
141 schema:familyName Khrustalyov
142 schema:givenName A.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013301475534.15
144 rdf:type schema:Person
145 sg:person.015064233310.35 schema:affiliation grid-institutes:None
146 schema:familyName Promakhov
147 schema:givenName V.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015064233310.35
149 rdf:type schema:Person
150 sg:person.016372730651.43 schema:affiliation grid-institutes:grid.77602.34
151 schema:familyName Khmeleva
152 schema:givenName M.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016372730651.43
154 rdf:type schema:Person
155 sg:person.07644463311.12 schema:affiliation grid-institutes:None
156 schema:familyName Zhukov
157 schema:givenName I.
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07644463311.12
159 rdf:type schema:Person
160 sg:person.0771536125.70 schema:affiliation grid-institutes:None
161 schema:familyName Vorozhtsov
162 schema:givenName A.
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771536125.70
164 rdf:type schema:Person
165 sg:pub.10.1134/s0040579514020146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051940629
166 https://doi.org/10.1134/s0040579514020146
167 rdf:type schema:CreativeWork
168 grid-institutes:None schema:alternateName Institute of Problems for Chemical and Energetic Technologies SB RAS, 659322, Biysk, Russian Federation
169 schema:name Institute of Problems for Chemical and Energetic Technologies SB RAS, 659322, Biysk, Russian Federation
170 National Research Tomsk State University, 634050, Tomsk, Russian Federation
171 rdf:type schema:Organization
172 grid-institutes:grid.467103.7 schema:alternateName Institute of Strength Physics and Materials Science SB RAS, 634021, Tomsk, Russian Federation
173 schema:name Institute of Strength Physics and Materials Science SB RAS, 634021, Tomsk, Russian Federation
174 National Research Tomsk State University, 634050, Tomsk, Russian Federation
175 rdf:type schema:Organization
176 grid-institutes:grid.77602.34 schema:alternateName National Research Tomsk State University, 634050, Tomsk, Russian Federation
177 schema:name National Research Tomsk State University, 634050, Tomsk, Russian Federation
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...