Direct Observation Through In Situ Transmission Electron Microscope of Early States of Crystallization in Nanoscale Metallic Glasses View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-09-19

AUTHORS

Y. Xie, S. Sohn, J. Schroers, J. J. Cha

ABSTRACT

Crystallization is a complex process that involves multiscale physics such as diffusion of atomic species over multiple length scales, thermodynamic energy considerations, and multiple possible intermediate states. In situ crystallization experiments inside a transmission electron microscope (TEM) using nanostructured metallic glasses (MGs) provide a unique platform to study directly crystallization kinetics and pathways. Here, we study the embryonic state of eutectic growth using Pt-Ni-Cu-P MG nanorods under in situ TEM. We directly observe the nucleation and growth of a Ni-rich polymorphic phase, followed by the nucleation and slower growth of a Cu-rich phase. The suppressed growth kinetics of the Cu-rich phase is attributed to locally changing chemical compositions. In addition, we show that growth can be controlled by incorporation of an entire nucleus instead of individual atoms. Such a nucleus has to align with the crystallographic orientation of a larger grain before it can be incorporated into the crystal. By directly observing the crystallization processes, particularly the early stages of non-polymorphic growth, in situ TEM crystallization studies of MG nanostructures provide a wealth of information, some of which can be applied to typical bulk crystallization. More... »

PAGES

2187-2191

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11837-017-2579-0

DOI

http://dx.doi.org/10.1007/s11837-017-2579-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091861809


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Center for Research on Interface Structures and Phenomena, Yale University, 06511, New Haven, CT, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA", 
            "Energy Sciences Institute, Yale West Campus, 06516, West Haven, CT, USA", 
            "Center for Research on Interface Structures and Phenomena, Yale University, 06511, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xie", 
        "givenName": "Y.", 
        "id": "sg:person.015676036243.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015676036243.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Research on Interface Structures and Phenomena, Yale University, 06511, New Haven, CT, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA", 
            "Center for Research on Interface Structures and Phenomena, Yale University, 06511, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sohn", 
        "givenName": "S.", 
        "id": "sg:person.01167274630.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167274630.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Research on Interface Structures and Phenomena, Yale University, 06511, New Haven, CT, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA", 
            "Center for Research on Interface Structures and Phenomena, Yale University, 06511, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schroers", 
        "givenName": "J.", 
        "id": "sg:person.01145527322.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145527322.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Research on Interface Structures and Phenomena, Yale University, 06511, New Haven, CT, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA", 
            "Energy Sciences Institute, Yale West Campus, 06516, West Haven, CT, USA", 
            "Center for Research on Interface Structures and Phenomena, Yale University, 06511, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cha", 
        "givenName": "J. J.", 
        "id": "sg:person.01214744402.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214744402.60"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmat4756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016154238", 
          "https://doi.org/10.1038/nmat4756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature17148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010675247", 
          "https://doi.org/10.1038/nature17148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2490", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005671775", 
          "https://doi.org/10.1038/ncomms2490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010078177", 
          "https://doi.org/10.1038/nmat3558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009569043", 
          "https://doi.org/10.1038/nmat2900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053661026", 
          "https://doi.org/10.1038/nmat3604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018290838", 
          "https://doi.org/10.1038/nature07718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-000-0160-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024361501", 
          "https://doi.org/10.1007/s11837-000-0160-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms9157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020300303", 
          "https://doi.org/10.1038/ncomms9157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/natrevmats.2016.34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022534818", 
          "https://doi.org/10.1038/natrevmats.2016.34"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/mrs2007.122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067969204", 
          "https://doi.org/10.1557/mrs2007.122"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-09-19", 
    "datePublishedReg": "2017-09-19", 
    "description": "Crystallization is a complex process that involves multiscale physics such as diffusion of atomic species over multiple length scales, thermodynamic energy considerations, and multiple possible intermediate states. In situ crystallization experiments inside a transmission electron microscope (TEM) using nanostructured metallic glasses (MGs) provide a unique platform to study directly crystallization kinetics and pathways. Here, we study the embryonic state of eutectic growth using Pt-Ni-Cu-P MG nanorods under in situ TEM. We directly observe the nucleation and growth of a Ni-rich polymorphic phase, followed by the nucleation and slower growth of a Cu-rich phase. The suppressed growth kinetics of the Cu-rich phase is attributed to locally changing chemical compositions. In addition, we show that growth can be controlled by incorporation of an entire nucleus instead of individual atoms. Such a nucleus has to align with the crystallographic orientation of a larger grain before it can be incorporated into the crystal. By directly observing the crystallization processes, particularly the early stages of non-polymorphic growth, in situ TEM crystallization studies of MG nanostructures provide a wealth of information, some of which can be applied to typical bulk crystallization.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11837-017-2579-0", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042541", 
        "issn": [
          "1047-4838", 
          "1543-1851"
        ], 
        "name": "JOM", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "69"
      }
    ], 
    "keywords": [
      "transmission electron microscope", 
      "situ transmission electron microscope", 
      "electron microscope", 
      "atomic species", 
      "individual atoms", 
      "Mg nanorods", 
      "multiscale physics", 
      "possible intermediate states", 
      "intermediate state", 
      "metallic glasses", 
      "nanoscale metallic glasses", 
      "unique platform", 
      "length scales", 
      "Mg nanostructures", 
      "direct observation", 
      "Cu-rich phase", 
      "glass", 
      "polymorphic phases", 
      "multiple length scales", 
      "microscope", 
      "crystallographic orientation", 
      "large grains", 
      "energy considerations", 
      "wealth of information", 
      "physics", 
      "nucleus", 
      "bulk crystallization", 
      "atoms", 
      "state", 
      "nanostructures", 
      "chemical composition", 
      "nanorods", 
      "crystals", 
      "phase", 
      "entire nucleus", 
      "nucleation", 
      "crystallization process", 
      "growth kinetics", 
      "crystallization", 
      "crystallization studies", 
      "diffusion", 
      "Pt\u2013Ni", 
      "experiments", 
      "orientation", 
      "crystallization kinetics", 
      "early state", 
      "crystallization experiments", 
      "kinetics", 
      "process", 
      "grains", 
      "composition", 
      "scale", 
      "growth", 
      "platform", 
      "incorporation", 
      "eutectic growth", 
      "early stages", 
      "information", 
      "addition", 
      "wealth", 
      "consideration", 
      "complex process", 
      "study", 
      "species", 
      "embryonic state", 
      "stage", 
      "slow growth", 
      "pathway", 
      "observations"
    ], 
    "name": "Direct Observation Through In Situ Transmission Electron Microscope of Early States of Crystallization in Nanoscale Metallic Glasses", 
    "pagination": "2187-2191", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091861809"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11837-017-2579-0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11837-017-2579-0", 
      "https://app.dimensions.ai/details/publication/pub.1091861809"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_749.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11837-017-2579-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11837-017-2579-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11837-017-2579-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11837-017-2579-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11837-017-2579-0'


 

This table displays all metadata directly associated to this object as RDF triples.

193 TRIPLES      21 PREDICATES      104 URIs      85 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11837-017-2579-0 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nc012ad79cc15469288b5d027fb3def9d
4 schema:citation sg:pub.10.1007/s11837-000-0160-7
5 sg:pub.10.1038/natrevmats.2016.34
6 sg:pub.10.1038/nature07718
7 sg:pub.10.1038/nature17148
8 sg:pub.10.1038/ncomms2490
9 sg:pub.10.1038/ncomms9157
10 sg:pub.10.1038/nmat2900
11 sg:pub.10.1038/nmat3558
12 sg:pub.10.1038/nmat3604
13 sg:pub.10.1038/nmat4756
14 sg:pub.10.1557/mrs2007.122
15 schema:datePublished 2017-09-19
16 schema:datePublishedReg 2017-09-19
17 schema:description Crystallization is a complex process that involves multiscale physics such as diffusion of atomic species over multiple length scales, thermodynamic energy considerations, and multiple possible intermediate states. In situ crystallization experiments inside a transmission electron microscope (TEM) using nanostructured metallic glasses (MGs) provide a unique platform to study directly crystallization kinetics and pathways. Here, we study the embryonic state of eutectic growth using Pt-Ni-Cu-P MG nanorods under in situ TEM. We directly observe the nucleation and growth of a Ni-rich polymorphic phase, followed by the nucleation and slower growth of a Cu-rich phase. The suppressed growth kinetics of the Cu-rich phase is attributed to locally changing chemical compositions. In addition, we show that growth can be controlled by incorporation of an entire nucleus instead of individual atoms. Such a nucleus has to align with the crystallographic orientation of a larger grain before it can be incorporated into the crystal. By directly observing the crystallization processes, particularly the early stages of non-polymorphic growth, in situ TEM crystallization studies of MG nanostructures provide a wealth of information, some of which can be applied to typical bulk crystallization.
18 schema:genre article
19 schema:isAccessibleForFree false
20 schema:isPartOf N1da43c5467064c7e82cd643340a133bd
21 Na039ea78e6824e0a8eeb09dc28b036d9
22 sg:journal.1042541
23 schema:keywords Cu-rich phase
24 Mg nanorods
25 Mg nanostructures
26 Pt–Ni
27 addition
28 atomic species
29 atoms
30 bulk crystallization
31 chemical composition
32 complex process
33 composition
34 consideration
35 crystallization
36 crystallization experiments
37 crystallization kinetics
38 crystallization process
39 crystallization studies
40 crystallographic orientation
41 crystals
42 diffusion
43 direct observation
44 early stages
45 early state
46 electron microscope
47 embryonic state
48 energy considerations
49 entire nucleus
50 eutectic growth
51 experiments
52 glass
53 grains
54 growth
55 growth kinetics
56 incorporation
57 individual atoms
58 information
59 intermediate state
60 kinetics
61 large grains
62 length scales
63 metallic glasses
64 microscope
65 multiple length scales
66 multiscale physics
67 nanorods
68 nanoscale metallic glasses
69 nanostructures
70 nucleation
71 nucleus
72 observations
73 orientation
74 pathway
75 phase
76 physics
77 platform
78 polymorphic phases
79 possible intermediate states
80 process
81 scale
82 situ transmission electron microscope
83 slow growth
84 species
85 stage
86 state
87 study
88 transmission electron microscope
89 unique platform
90 wealth
91 wealth of information
92 schema:name Direct Observation Through In Situ Transmission Electron Microscope of Early States of Crystallization in Nanoscale Metallic Glasses
93 schema:pagination 2187-2191
94 schema:productId N33938c02ea3545258414b2b8042995fb
95 N964cb5f41d694da7b39c25825adce274
96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091861809
97 https://doi.org/10.1007/s11837-017-2579-0
98 schema:sdDatePublished 2022-09-02T16:02
99 schema:sdLicense https://scigraph.springernature.com/explorer/license/
100 schema:sdPublisher Nb052776d123a4cca8367a100345bdeaa
101 schema:url https://doi.org/10.1007/s11837-017-2579-0
102 sgo:license sg:explorer/license/
103 sgo:sdDataset articles
104 rdf:type schema:ScholarlyArticle
105 N1da43c5467064c7e82cd643340a133bd schema:volumeNumber 69
106 rdf:type schema:PublicationVolume
107 N33891a8f6f914fdbaeb60b151374f64b rdf:first sg:person.01167274630.47
108 rdf:rest N343160d311014318b62143e1866d3258
109 N33938c02ea3545258414b2b8042995fb schema:name dimensions_id
110 schema:value pub.1091861809
111 rdf:type schema:PropertyValue
112 N343160d311014318b62143e1866d3258 rdf:first sg:person.01145527322.19
113 rdf:rest Nc65e3398001d47d4af4e3cd4967fbaf5
114 N964cb5f41d694da7b39c25825adce274 schema:name doi
115 schema:value 10.1007/s11837-017-2579-0
116 rdf:type schema:PropertyValue
117 Na039ea78e6824e0a8eeb09dc28b036d9 schema:issueNumber 11
118 rdf:type schema:PublicationIssue
119 Nb052776d123a4cca8367a100345bdeaa schema:name Springer Nature - SN SciGraph project
120 rdf:type schema:Organization
121 Nc012ad79cc15469288b5d027fb3def9d rdf:first sg:person.015676036243.79
122 rdf:rest N33891a8f6f914fdbaeb60b151374f64b
123 Nc65e3398001d47d4af4e3cd4967fbaf5 rdf:first sg:person.01214744402.60
124 rdf:rest rdf:nil
125 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
126 schema:name Engineering
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
129 schema:name Materials Engineering
130 rdf:type schema:DefinedTerm
131 sg:journal.1042541 schema:issn 1047-4838
132 1543-1851
133 schema:name JOM
134 schema:publisher Springer Nature
135 rdf:type schema:Periodical
136 sg:person.01145527322.19 schema:affiliation grid-institutes:grid.47100.32
137 schema:familyName Schroers
138 schema:givenName J.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145527322.19
140 rdf:type schema:Person
141 sg:person.01167274630.47 schema:affiliation grid-institutes:grid.47100.32
142 schema:familyName Sohn
143 schema:givenName S.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167274630.47
145 rdf:type schema:Person
146 sg:person.01214744402.60 schema:affiliation grid-institutes:grid.47100.32
147 schema:familyName Cha
148 schema:givenName J. J.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214744402.60
150 rdf:type schema:Person
151 sg:person.015676036243.79 schema:affiliation grid-institutes:grid.47100.32
152 schema:familyName Xie
153 schema:givenName Y.
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015676036243.79
155 rdf:type schema:Person
156 sg:pub.10.1007/s11837-000-0160-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024361501
157 https://doi.org/10.1007/s11837-000-0160-7
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/natrevmats.2016.34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022534818
160 https://doi.org/10.1038/natrevmats.2016.34
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/nature07718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018290838
163 https://doi.org/10.1038/nature07718
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nature17148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010675247
166 https://doi.org/10.1038/nature17148
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/ncomms2490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005671775
169 https://doi.org/10.1038/ncomms2490
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/ncomms9157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020300303
172 https://doi.org/10.1038/ncomms9157
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/nmat2900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009569043
175 https://doi.org/10.1038/nmat2900
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/nmat3558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010078177
178 https://doi.org/10.1038/nmat3558
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/nmat3604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053661026
181 https://doi.org/10.1038/nmat3604
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/nmat4756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016154238
184 https://doi.org/10.1038/nmat4756
185 rdf:type schema:CreativeWork
186 sg:pub.10.1557/mrs2007.122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067969204
187 https://doi.org/10.1557/mrs2007.122
188 rdf:type schema:CreativeWork
189 grid-institutes:grid.47100.32 schema:alternateName Center for Research on Interface Structures and Phenomena, Yale University, 06511, New Haven, CT, USA
190 schema:name Center for Research on Interface Structures and Phenomena, Yale University, 06511, New Haven, CT, USA
191 Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA
192 Energy Sciences Institute, Yale West Campus, 06516, West Haven, CT, USA
193 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...