Introduction of Electrostatically Charged Particles into Metal Melts View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-09-12

AUTHORS

Olga Kudryashova, Sergey Vorozhtsov, Maria Stepkina, Anton Khrustalev

ABSTRACT

One of the possible methods to produce composite alloys with improved mechanical characteristics is the modification of metal melts using submicron- or nanosized particles. Different methods, like ultrasonic or vibration processing, have been used to introduce these particles into the metal melt. The introduction of particles into a metal melt is prevented by the poor wettability of the liquid metal. The present study explores the use of electrostatic charge for increasing the wettability of the particles and preventing their agglomeration. The wettability of electrostatically charged particles by the metal melt under the impact of ultrasound has been studied. The relationships between the impact time and the physical and chemical properties of the particles and the melt along with the characteristics of the acoustic radiation have been studied. It was experimentally demonstrated that the introduction of electrostatically charged particles into the metal melt reduces the porosity and the crystal grain size. More... »

PAGES

2524-2528

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11837-017-2567-4

DOI

http://dx.doi.org/10.1007/s11837-017-2567-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091596941


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0913", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mechanical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0914", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Resources Engineering and Extractive Metallurgy", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IPCET Siberian Branch, Russian Academy of Sciences, Biysk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Tomsk State University, Tomsk, Russia", 
            "IPCET Siberian Branch, Russian Academy of Sciences, Biysk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kudryashova", 
        "givenName": "Olga", 
        "id": "sg:person.011002610413.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011002610413.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk State University, Tomsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "Tomsk State University, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vorozhtsov", 
        "givenName": "Sergey", 
        "id": "sg:person.010552241521.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010552241521.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IPCET Siberian Branch, Russian Academy of Sciences, Biysk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "IPCET Siberian Branch, Russian Academy of Sciences, Biysk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stepkina", 
        "givenName": "Maria", 
        "id": "sg:person.010037455107.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010037455107.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk State University, Tomsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "Tomsk State University, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khrustalev", 
        "givenName": "Anton", 
        "id": "sg:person.013113265001.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013113265001.90"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11182-016-0815-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025003317", 
          "https://doi.org/10.1007/s11182-016-0815-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-998-0342-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013089769", 
          "https://doi.org/10.1007/s11837-998-0342-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-016-1851-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001086409", 
          "https://doi.org/10.1007/s11837-016-1851-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-5408-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012759320", 
          "https://doi.org/10.1007/978-1-4757-5408-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-016-2147-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042536435", 
          "https://doi.org/10.1007/s11837-016-2147-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-016-1854-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004695885", 
          "https://doi.org/10.1007/s11837-016-1854-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-015-2850-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022718668", 
          "https://doi.org/10.1007/s11661-015-2850-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-09-12", 
    "datePublishedReg": "2017-09-12", 
    "description": "One of the possible methods to produce composite alloys with improved mechanical characteristics is the modification of metal melts using submicron- or nanosized particles. Different methods, like ultrasonic or vibration processing, have been used to introduce these particles into the metal melt. The introduction of particles into a metal melt is prevented by the poor wettability of the liquid metal. The present study explores the use of electrostatic charge for increasing the wettability of the particles and preventing their agglomeration. The wettability of electrostatically charged particles by the metal melt under the impact of ultrasound has been studied. The relationships between the impact time and the physical and chemical properties of the particles and the melt along with the characteristics of the acoustic radiation have been studied. It was experimentally demonstrated that the introduction of electrostatically charged particles into the metal melt reduces the porosity and the crystal grain size.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11837-017-2567-4", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6709037", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1042541", 
        "issn": [
          "1047-4838", 
          "1543-1851"
        ], 
        "name": "JOM", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "69"
      }
    ], 
    "keywords": [
      "metal melts", 
      "improved mechanical characteristics", 
      "introduction of particles", 
      "crystal grain size", 
      "composite alloys", 
      "vibration processing", 
      "poor wettability", 
      "mechanical characteristics", 
      "liquid metal", 
      "acoustic radiation", 
      "grain size", 
      "wettability", 
      "electrostatic charge", 
      "impact time", 
      "impact of ultrasound", 
      "particles", 
      "melt", 
      "chemical properties", 
      "alloy", 
      "possible methods", 
      "porosity", 
      "submicron", 
      "agglomeration", 
      "different methods", 
      "characteristics", 
      "metals", 
      "method", 
      "properties", 
      "processing", 
      "charge", 
      "size", 
      "introduction", 
      "radiation", 
      "modification", 
      "time", 
      "use", 
      "impact", 
      "present study", 
      "ultrasound", 
      "study", 
      "relationship"
    ], 
    "name": "Introduction of Electrostatically Charged Particles into Metal Melts", 
    "pagination": "2524-2528", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091596941"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11837-017-2567-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11837-017-2567-4", 
      "https://app.dimensions.ai/details/publication/pub.1091596941"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_734.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11837-017-2567-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11837-017-2567-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11837-017-2567-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11837-017-2567-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11837-017-2567-4'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      21 PREDICATES      74 URIs      57 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11837-017-2567-4 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 anzsrc-for:0913
4 anzsrc-for:0914
5 schema:author N6b06e3cdc2a241a291c92131b628aa5a
6 schema:citation sg:pub.10.1007/978-1-4757-5408-7
7 sg:pub.10.1007/s11182-016-0815-7
8 sg:pub.10.1007/s11661-015-2850-3
9 sg:pub.10.1007/s11837-016-1851-z
10 sg:pub.10.1007/s11837-016-1854-9
11 sg:pub.10.1007/s11837-016-2147-z
12 sg:pub.10.1007/s11837-998-0342-2
13 schema:datePublished 2017-09-12
14 schema:datePublishedReg 2017-09-12
15 schema:description One of the possible methods to produce composite alloys with improved mechanical characteristics is the modification of metal melts using submicron- or nanosized particles. Different methods, like ultrasonic or vibration processing, have been used to introduce these particles into the metal melt. The introduction of particles into a metal melt is prevented by the poor wettability of the liquid metal. The present study explores the use of electrostatic charge for increasing the wettability of the particles and preventing their agglomeration. The wettability of electrostatically charged particles by the metal melt under the impact of ultrasound has been studied. The relationships between the impact time and the physical and chemical properties of the particles and the melt along with the characteristics of the acoustic radiation have been studied. It was experimentally demonstrated that the introduction of electrostatically charged particles into the metal melt reduces the porosity and the crystal grain size.
16 schema:genre article
17 schema:isAccessibleForFree false
18 schema:isPartOf N602a0b3f4e184070b6dc5f903c3c5e37
19 N6d3011cc10554e84a26e08e6498708dd
20 sg:journal.1042541
21 schema:keywords acoustic radiation
22 agglomeration
23 alloy
24 characteristics
25 charge
26 chemical properties
27 composite alloys
28 crystal grain size
29 different methods
30 electrostatic charge
31 grain size
32 impact
33 impact of ultrasound
34 impact time
35 improved mechanical characteristics
36 introduction
37 introduction of particles
38 liquid metal
39 mechanical characteristics
40 melt
41 metal melts
42 metals
43 method
44 modification
45 particles
46 poor wettability
47 porosity
48 possible methods
49 present study
50 processing
51 properties
52 radiation
53 relationship
54 size
55 study
56 submicron
57 time
58 ultrasound
59 use
60 vibration processing
61 wettability
62 schema:name Introduction of Electrostatically Charged Particles into Metal Melts
63 schema:pagination 2524-2528
64 schema:productId Nbd31541346634e26ad63a46533a01976
65 Ne4ad34229dfd4dac91bb202cbf00de87
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091596941
67 https://doi.org/10.1007/s11837-017-2567-4
68 schema:sdDatePublished 2022-11-24T21:01
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher Na95a40bdbede4914b924e8ecc3a8ee46
71 schema:url https://doi.org/10.1007/s11837-017-2567-4
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N1b00d5a43f6443018d43e2bb0ba140ce rdf:first sg:person.010037455107.21
76 rdf:rest N26d326f812b24b15a08b5cb2f4af503c
77 N26d326f812b24b15a08b5cb2f4af503c rdf:first sg:person.013113265001.90
78 rdf:rest rdf:nil
79 N602a0b3f4e184070b6dc5f903c3c5e37 schema:volumeNumber 69
80 rdf:type schema:PublicationVolume
81 N6b06e3cdc2a241a291c92131b628aa5a rdf:first sg:person.011002610413.39
82 rdf:rest Na4539b37a8ae4017b60bb3dd276fe3ff
83 N6d3011cc10554e84a26e08e6498708dd schema:issueNumber 12
84 rdf:type schema:PublicationIssue
85 Na4539b37a8ae4017b60bb3dd276fe3ff rdf:first sg:person.010552241521.39
86 rdf:rest N1b00d5a43f6443018d43e2bb0ba140ce
87 Na95a40bdbede4914b924e8ecc3a8ee46 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 Nbd31541346634e26ad63a46533a01976 schema:name doi
90 schema:value 10.1007/s11837-017-2567-4
91 rdf:type schema:PropertyValue
92 Ne4ad34229dfd4dac91bb202cbf00de87 schema:name dimensions_id
93 schema:value pub.1091596941
94 rdf:type schema:PropertyValue
95 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
96 schema:name Engineering
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
99 schema:name Materials Engineering
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0913 schema:inDefinedTermSet anzsrc-for:
102 schema:name Mechanical Engineering
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0914 schema:inDefinedTermSet anzsrc-for:
105 schema:name Resources Engineering and Extractive Metallurgy
106 rdf:type schema:DefinedTerm
107 sg:grant.6709037 http://pending.schema.org/fundedItem sg:pub.10.1007/s11837-017-2567-4
108 rdf:type schema:MonetaryGrant
109 sg:journal.1042541 schema:issn 1047-4838
110 1543-1851
111 schema:name JOM
112 schema:publisher Springer Nature
113 rdf:type schema:Periodical
114 sg:person.010037455107.21 schema:affiliation grid-institutes:grid.4886.2
115 schema:familyName Stepkina
116 schema:givenName Maria
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010037455107.21
118 rdf:type schema:Person
119 sg:person.010552241521.39 schema:affiliation grid-institutes:grid.77602.34
120 schema:familyName Vorozhtsov
121 schema:givenName Sergey
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010552241521.39
123 rdf:type schema:Person
124 sg:person.011002610413.39 schema:affiliation grid-institutes:grid.4886.2
125 schema:familyName Kudryashova
126 schema:givenName Olga
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011002610413.39
128 rdf:type schema:Person
129 sg:person.013113265001.90 schema:affiliation grid-institutes:grid.77602.34
130 schema:familyName Khrustalev
131 schema:givenName Anton
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013113265001.90
133 rdf:type schema:Person
134 sg:pub.10.1007/978-1-4757-5408-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012759320
135 https://doi.org/10.1007/978-1-4757-5408-7
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s11182-016-0815-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025003317
138 https://doi.org/10.1007/s11182-016-0815-7
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s11661-015-2850-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022718668
141 https://doi.org/10.1007/s11661-015-2850-3
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s11837-016-1851-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1001086409
144 https://doi.org/10.1007/s11837-016-1851-z
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s11837-016-1854-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004695885
147 https://doi.org/10.1007/s11837-016-1854-9
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s11837-016-2147-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1042536435
150 https://doi.org/10.1007/s11837-016-2147-z
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s11837-998-0342-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013089769
153 https://doi.org/10.1007/s11837-998-0342-2
154 rdf:type schema:CreativeWork
155 grid-institutes:grid.4886.2 schema:alternateName IPCET Siberian Branch, Russian Academy of Sciences, Biysk, Russia
156 schema:name IPCET Siberian Branch, Russian Academy of Sciences, Biysk, Russia
157 Tomsk State University, Tomsk, Russia
158 rdf:type schema:Organization
159 grid-institutes:grid.77602.34 schema:alternateName Tomsk State University, Tomsk, Russia
160 schema:name Tomsk State University, Tomsk, Russia
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...