Macrosegregation During Re-melting and Holding of Directionally Solidified Al-7 wt.% Si Alloy in Microgravity View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-05-26

AUTHORS

M. Lauer, M. Ghods, S. G. Angart, R. N. Grugel, S. N. Tewari, D. R. Poirier

ABSTRACT

As-cast aluminum-7 wt.% ailicon alloy sample rods were re-melted and directionally solidified on Earth which resulted in uniform dendritically aligned arrays. These arrays were then partially back-melted through an imposed, and constant, temperature gradient in the microgravity environment aboard the International Space Station. The mushy zones that developed in the seed crystals were held for different periods prior to initiating directional solidification. Upon return, examination of the initial mushy-zone regions exhibited significant macrosegregation in terms of a solute-depleted zone that increased as a function of the holding time. The silicon (solute) content in these regions was measured on prepared longitudinal sections by electron microprobe analysis as well as by determining the fraction eutectic on several transverse sections. The silicon content was found to increase up the temperature gradient resulting in significant silicon concentration immediately ahead of the mushy-zone tips. The measured macrosegregation agrees well with calculations from a mathematical model developed to simulate the re-melting and holding process. The results, due to processing in a microgravity environment where buoyancy and thermosolutal convection are minimized, serve as benchmark solidification data. More... »

PAGES

1289-1297

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11837-017-2380-0

DOI

http://dx.doi.org/10.1007/s11837-017-2380-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085604460


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Engineering, The University of Arizona, 85721, Tucson, AZ, USA", 
          "id": "http://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "ME Elecmetal, 55808, Duluth, MN, USA", 
            "Department of Materials Science and Engineering, The University of Arizona, 85721, Tucson, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lauer", 
        "givenName": "M.", 
        "id": "sg:person.013515515710.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013515515710.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chemical and Biomedical Engineering Department, Cleveland State University, 44115, Cleveland, OH, USA", 
          "id": "http://www.grid.ac/institutes/grid.254298.0", 
          "name": [
            "Chemical and Biomedical Engineering Department, Cleveland State University, 44115, Cleveland, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ghods", 
        "givenName": "M.", 
        "id": "sg:person.012036664047.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012036664047.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Engineering, The University of Arizona, 85721, Tucson, AZ, USA", 
          "id": "http://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "Acronic, 49461, Whitehall, MI, USA", 
            "Department of Materials Science and Engineering, The University of Arizona, 85721, Tucson, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Angart", 
        "givenName": "S. G.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "NASA-Marshall Space Flight Center, 35812, Huntsville, AL, USA", 
          "id": "http://www.grid.ac/institutes/grid.419091.4", 
          "name": [
            "NASA-Marshall Space Flight Center, 35812, Huntsville, AL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grugel", 
        "givenName": "R. N.", 
        "id": "sg:person.013773444133.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013773444133.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chemical and Biomedical Engineering Department, Cleveland State University, 44115, Cleveland, OH, USA", 
          "id": "http://www.grid.ac/institutes/grid.254298.0", 
          "name": [
            "Chemical and Biomedical Engineering Department, Cleveland State University, 44115, Cleveland, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tewari", 
        "givenName": "S. N.", 
        "id": "sg:person.01115420511.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115420511.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Engineering, The University of Arizona, 85721, Tucson, AZ, USA", 
          "id": "http://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "Department of Materials Science and Engineering, The University of Arizona, 85721, Tucson, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poirier", 
        "givenName": "D. R.", 
        "id": "sg:person.015717554343.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015717554343.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02868729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039755537", 
          "https://doi.org/10.1007/bf02868729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-006-0076-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020453196", 
          "https://doi.org/10.1007/s11661-006-0076-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11663-014-0037-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045003839", 
          "https://doi.org/10.1007/s11663-014-0037-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-012-7054-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033626340", 
          "https://doi.org/10.1007/s10853-012-7054-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-05-26", 
    "datePublishedReg": "2017-05-26", 
    "description": "As-cast aluminum-7 wt.% ailicon alloy sample rods were re-melted and directionally solidified on Earth which resulted in uniform dendritically aligned arrays. These arrays were then partially back-melted through an imposed, and constant, temperature gradient in the microgravity environment aboard the International Space Station. The mushy zones that developed in the seed crystals were held for different periods prior to initiating directional solidification. Upon return, examination of the initial mushy-zone regions exhibited significant macrosegregation in terms of a solute-depleted zone that increased as a function of the holding time. The silicon (solute) content in these regions was measured on prepared longitudinal sections by electron microprobe analysis as well as by determining the fraction eutectic on several transverse sections. The silicon content was found to increase up the temperature gradient resulting in significant silicon concentration immediately ahead of the mushy-zone tips. The measured macrosegregation agrees well with calculations from a mathematical model developed to simulate the re-melting and holding process. The results, due to processing in a microgravity environment where buoyancy and thermosolutal convection are minimized, serve as benchmark solidification data.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11837-017-2380-0", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8748107", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1042541", 
        "issn": [
          "1047-4838", 
          "1543-1851"
        ], 
        "name": "JOM", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "69"
      }
    ], 
    "keywords": [
      "silicon content", 
      "mathematical model", 
      "temperature gradient", 
      "solute-depleted zone", 
      "Al-7 wt", 
      "microgravity environment", 
      "significant macrosegregation", 
      "solidification data", 
      "Si alloy", 
      "mushy zone", 
      "thermosolutal convection", 
      "directional solidification", 
      "International Space Station", 
      "macrosegregation", 
      "sample rod", 
      "silicon concentration", 
      "Space Station", 
      "seed crystals", 
      "wt", 
      "alloy", 
      "solidification", 
      "convection", 
      "buoyancy", 
      "array", 
      "calculations", 
      "longitudinal sections", 
      "gradient", 
      "electron microprobe analysis", 
      "zone", 
      "microprobe analysis", 
      "model", 
      "uniform", 
      "rods", 
      "terms", 
      "microgravity", 
      "tip", 
      "stations", 
      "function", 
      "processing", 
      "crystals", 
      "content", 
      "environment", 
      "transverse sections", 
      "process", 
      "Earth", 
      "sections", 
      "different periods", 
      "region", 
      "results", 
      "fraction", 
      "analysis", 
      "time", 
      "concentration", 
      "data", 
      "holdings", 
      "return", 
      "period", 
      "examination"
    ], 
    "name": "Macrosegregation During Re-melting and Holding of Directionally Solidified Al-7 wt.% Si Alloy in Microgravity", 
    "pagination": "1289-1297", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085604460"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11837-017-2380-0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11837-017-2380-0", 
      "https://app.dimensions.ai/details/publication/pub.1085604460"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_757.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11837-017-2380-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11837-017-2380-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11837-017-2380-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11837-017-2380-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11837-017-2380-0'


 

This table displays all metadata directly associated to this object as RDF triples.

176 TRIPLES      22 PREDICATES      87 URIs      75 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11837-017-2380-0 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N72c877cf252f4fae9d71e8340224bd24
4 schema:citation sg:pub.10.1007/bf02868729
5 sg:pub.10.1007/s10853-012-7054-2
6 sg:pub.10.1007/s11661-006-0076-0
7 sg:pub.10.1007/s11663-014-0037-8
8 schema:datePublished 2017-05-26
9 schema:datePublishedReg 2017-05-26
10 schema:description As-cast aluminum-7 wt.% ailicon alloy sample rods were re-melted and directionally solidified on Earth which resulted in uniform dendritically aligned arrays. These arrays were then partially back-melted through an imposed, and constant, temperature gradient in the microgravity environment aboard the International Space Station. The mushy zones that developed in the seed crystals were held for different periods prior to initiating directional solidification. Upon return, examination of the initial mushy-zone regions exhibited significant macrosegregation in terms of a solute-depleted zone that increased as a function of the holding time. The silicon (solute) content in these regions was measured on prepared longitudinal sections by electron microprobe analysis as well as by determining the fraction eutectic on several transverse sections. The silicon content was found to increase up the temperature gradient resulting in significant silicon concentration immediately ahead of the mushy-zone tips. The measured macrosegregation agrees well with calculations from a mathematical model developed to simulate the re-melting and holding process. The results, due to processing in a microgravity environment where buoyancy and thermosolutal convection are minimized, serve as benchmark solidification data.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf Nc193ce51c8d04b74b00ec4e2db5ed8e0
15 Nf0a89754cbaa49b5bfb6eb2a5007e6ca
16 sg:journal.1042541
17 schema:keywords Al-7 wt
18 Earth
19 International Space Station
20 Si alloy
21 Space Station
22 alloy
23 analysis
24 array
25 buoyancy
26 calculations
27 concentration
28 content
29 convection
30 crystals
31 data
32 different periods
33 directional solidification
34 electron microprobe analysis
35 environment
36 examination
37 fraction
38 function
39 gradient
40 holdings
41 longitudinal sections
42 macrosegregation
43 mathematical model
44 microgravity
45 microgravity environment
46 microprobe analysis
47 model
48 mushy zone
49 period
50 process
51 processing
52 region
53 results
54 return
55 rods
56 sample rod
57 sections
58 seed crystals
59 significant macrosegregation
60 silicon concentration
61 silicon content
62 solidification
63 solidification data
64 solute-depleted zone
65 stations
66 temperature gradient
67 terms
68 thermosolutal convection
69 time
70 tip
71 transverse sections
72 uniform
73 wt
74 zone
75 schema:name Macrosegregation During Re-melting and Holding of Directionally Solidified Al-7 wt.% Si Alloy in Microgravity
76 schema:pagination 1289-1297
77 schema:productId N2edc52273c9d41f3afb98a8790e06945
78 Ne7c37d035bce4100962b4a63f7b555a5
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085604460
80 https://doi.org/10.1007/s11837-017-2380-0
81 schema:sdDatePublished 2022-06-01T22:16
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher Nffbffb37a77b4d10bbcaea62f8bcf0d7
84 schema:url https://doi.org/10.1007/s11837-017-2380-0
85 sgo:license sg:explorer/license/
86 sgo:sdDataset articles
87 rdf:type schema:ScholarlyArticle
88 N2edc52273c9d41f3afb98a8790e06945 schema:name doi
89 schema:value 10.1007/s11837-017-2380-0
90 rdf:type schema:PropertyValue
91 N599c1294a959440fa21928fef1ecb286 rdf:first sg:person.015717554343.15
92 rdf:rest rdf:nil
93 N5a653b07d2e941d991bc168cc9b794ff rdf:first Nc81816ec642c43a09b499c405b8d32c9
94 rdf:rest Na9af70ad4c6b4031b2c4ccb758196a12
95 N72c877cf252f4fae9d71e8340224bd24 rdf:first sg:person.013515515710.16
96 rdf:rest Na5331fd9b1834c25a9b6b77df75db212
97 Na038615dc3824bb2bfac8848c5b125bc rdf:first sg:person.01115420511.42
98 rdf:rest N599c1294a959440fa21928fef1ecb286
99 Na5331fd9b1834c25a9b6b77df75db212 rdf:first sg:person.012036664047.40
100 rdf:rest N5a653b07d2e941d991bc168cc9b794ff
101 Na9af70ad4c6b4031b2c4ccb758196a12 rdf:first sg:person.013773444133.30
102 rdf:rest Na038615dc3824bb2bfac8848c5b125bc
103 Nc193ce51c8d04b74b00ec4e2db5ed8e0 schema:volumeNumber 69
104 rdf:type schema:PublicationVolume
105 Nc81816ec642c43a09b499c405b8d32c9 schema:affiliation grid-institutes:grid.134563.6
106 schema:familyName Angart
107 schema:givenName S. G.
108 rdf:type schema:Person
109 Ne7c37d035bce4100962b4a63f7b555a5 schema:name dimensions_id
110 schema:value pub.1085604460
111 rdf:type schema:PropertyValue
112 Nf0a89754cbaa49b5bfb6eb2a5007e6ca schema:issueNumber 8
113 rdf:type schema:PublicationIssue
114 Nffbffb37a77b4d10bbcaea62f8bcf0d7 schema:name Springer Nature - SN SciGraph project
115 rdf:type schema:Organization
116 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
117 schema:name Engineering
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
120 schema:name Materials Engineering
121 rdf:type schema:DefinedTerm
122 sg:grant.8748107 http://pending.schema.org/fundedItem sg:pub.10.1007/s11837-017-2380-0
123 rdf:type schema:MonetaryGrant
124 sg:journal.1042541 schema:issn 1047-4838
125 1543-1851
126 schema:name JOM
127 schema:publisher Springer Nature
128 rdf:type schema:Periodical
129 sg:person.01115420511.42 schema:affiliation grid-institutes:grid.254298.0
130 schema:familyName Tewari
131 schema:givenName S. N.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115420511.42
133 rdf:type schema:Person
134 sg:person.012036664047.40 schema:affiliation grid-institutes:grid.254298.0
135 schema:familyName Ghods
136 schema:givenName M.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012036664047.40
138 rdf:type schema:Person
139 sg:person.013515515710.16 schema:affiliation grid-institutes:grid.134563.6
140 schema:familyName Lauer
141 schema:givenName M.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013515515710.16
143 rdf:type schema:Person
144 sg:person.013773444133.30 schema:affiliation grid-institutes:grid.419091.4
145 schema:familyName Grugel
146 schema:givenName R. N.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013773444133.30
148 rdf:type schema:Person
149 sg:person.015717554343.15 schema:affiliation grid-institutes:grid.134563.6
150 schema:familyName Poirier
151 schema:givenName D. R.
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015717554343.15
153 rdf:type schema:Person
154 sg:pub.10.1007/bf02868729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039755537
155 https://doi.org/10.1007/bf02868729
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s10853-012-7054-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033626340
158 https://doi.org/10.1007/s10853-012-7054-2
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s11661-006-0076-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020453196
161 https://doi.org/10.1007/s11661-006-0076-0
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/s11663-014-0037-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045003839
164 https://doi.org/10.1007/s11663-014-0037-8
165 rdf:type schema:CreativeWork
166 grid-institutes:grid.134563.6 schema:alternateName Department of Materials Science and Engineering, The University of Arizona, 85721, Tucson, AZ, USA
167 schema:name Acronic, 49461, Whitehall, MI, USA
168 Department of Materials Science and Engineering, The University of Arizona, 85721, Tucson, AZ, USA
169 ME Elecmetal, 55808, Duluth, MN, USA
170 rdf:type schema:Organization
171 grid-institutes:grid.254298.0 schema:alternateName Chemical and Biomedical Engineering Department, Cleveland State University, 44115, Cleveland, OH, USA
172 schema:name Chemical and Biomedical Engineering Department, Cleveland State University, 44115, Cleveland, OH, USA
173 rdf:type schema:Organization
174 grid-institutes:grid.419091.4 schema:alternateName NASA-Marshall Space Flight Center, 35812, Huntsville, AL, USA
175 schema:name NASA-Marshall Space Flight Center, 35812, Huntsville, AL, USA
176 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...