The Role of Hydrogen-Enhanced Strain-Induced Lattice Defects on Hydrogen Embrittlement Susceptibility of X80 Pipeline Steel View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-05-16

AUTHORS

M. Hattori, H. Suzuki, Y. Seko, K. Takai

ABSTRACT

Studies to date have not completely determined the factors influencing hydrogen embrittlement of ferrite/bainite X80 pipeline steel. Hydrogen embrittlement susceptibility was evaluated based on fracture strain in tensile testing. We conducted a thermal desorption analysis to measure the amount of tracer hydrogen corresponding to that of lattice defects. Hydrogen embrittlement susceptibility and the amount of tracer hydrogen significantly increased with decreasing crosshead speed. Additionally, a significant increase in the formation of hydrogen-enhanced strain-induced lattice defects was observed immediately before the final fracture. In contrast to hydrogen-free specimens, the fracture surface of the hydrogen-charged specimens exhibited shallower dimples without nuclei, such as secondary phase particles. These findings indicate that the presence of hydrogen enhanced the formation of lattice defects, particularly just prior to the occurrence of final fracture. This in turn enhanced the formation of shallower dimples, thereby potentially causing premature fracture of X80 pipeline steel at lower crosshead speeds. More... »

PAGES

1375-1380

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11837-017-2371-1

DOI

http://dx.doi.org/10.1007/s11837-017-2371-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085420856


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Graduate School of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.412681.8", 
          "name": [
            "Graduate School of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hattori", 
        "givenName": "M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Engineering and Applied Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.412681.8", 
          "name": [
            "Department of Engineering and Applied Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suzuki", 
        "givenName": "H.", 
        "id": "sg:person.012555337103.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012555337103.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Earthquake Engineering and Fracture Mechanics Laboratory, Fundamental Technology Research Institute, Tokyo Gas Co., Ltd., 230-0045, Yokohama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.460109.a", 
          "name": [
            "Earthquake Engineering and Fracture Mechanics Laboratory, Fundamental Technology Research Institute, Tokyo Gas Co., Ltd., 230-0045, Yokohama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seko", 
        "givenName": "Y.", 
        "id": "sg:person.014131552652.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014131552652.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Engineering and Applied Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.412681.8", 
          "name": [
            "Department of Engineering and Applied Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takai", 
        "givenName": "K.", 
        "id": "sg:person.016155070417.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016155070417.42"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-05-16", 
    "datePublishedReg": "2017-05-16", 
    "description": "Studies to date have not completely determined the factors influencing hydrogen embrittlement of ferrite/bainite X80 pipeline steel. Hydrogen embrittlement susceptibility was evaluated based on fracture strain in tensile testing. We conducted a thermal desorption analysis to measure the amount of tracer hydrogen corresponding to that of lattice defects. Hydrogen embrittlement susceptibility and the amount of tracer hydrogen significantly increased with decreasing crosshead speed. Additionally, a significant increase in the formation of hydrogen-enhanced strain-induced lattice defects was observed immediately before the final fracture. In contrast to hydrogen-free specimens, the fracture surface of the hydrogen-charged specimens exhibited shallower dimples without nuclei, such as secondary phase particles. These findings indicate that the presence of hydrogen enhanced the formation of lattice defects, particularly just prior to the occurrence of final fracture. This in turn enhanced the formation of shallower dimples, thereby potentially causing premature fracture of X80 pipeline steel at lower crosshead speeds.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11837-017-2371-1", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042541", 
        "issn": [
          "1047-4838", 
          "1543-1851"
        ], 
        "name": "JOM", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "69"
      }
    ], 
    "keywords": [
      "X80 pipeline steel", 
      "hydrogen embrittlement susceptibility", 
      "pipeline steel", 
      "embrittlement susceptibility", 
      "final fracture", 
      "shallow dimples", 
      "crosshead speed", 
      "hydrogen-free specimens", 
      "low crosshead speed", 
      "lattice defects", 
      "hydrogen-charged specimens", 
      "secondary phase particles", 
      "thermal desorption analysis", 
      "fracture strain", 
      "fracture surfaces", 
      "premature fracture", 
      "hydrogen embrittlement", 
      "phase particles", 
      "tensile testing", 
      "presence of hydrogen", 
      "steel", 
      "desorption analysis", 
      "dimples", 
      "hydrogen", 
      "speed", 
      "embrittlement", 
      "fractures", 
      "specimens", 
      "defects", 
      "particles", 
      "surface", 
      "formation", 
      "amount", 
      "strains", 
      "testing", 
      "increase", 
      "analysis", 
      "turn", 
      "presence", 
      "significant increase", 
      "study", 
      "factors", 
      "occurrence", 
      "susceptibility", 
      "contrast", 
      "date", 
      "role", 
      "findings", 
      "nucleus"
    ], 
    "name": "The Role of Hydrogen-Enhanced Strain-Induced Lattice Defects on Hydrogen Embrittlement Susceptibility of X80 Pipeline Steel", 
    "pagination": "1375-1380", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085420856"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11837-017-2371-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11837-017-2371-1", 
      "https://app.dimensions.ai/details/publication/pub.1085420856"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_723.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11837-017-2371-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11837-017-2371-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11837-017-2371-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11837-017-2371-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11837-017-2371-1'


 

This table displays all metadata directly associated to this object as RDF triples.

131 TRIPLES      20 PREDICATES      73 URIs      65 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11837-017-2371-1 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N8b1f312e7a7147ff8e7c371224d4c5ae
4 schema:datePublished 2017-05-16
5 schema:datePublishedReg 2017-05-16
6 schema:description Studies to date have not completely determined the factors influencing hydrogen embrittlement of ferrite/bainite X80 pipeline steel. Hydrogen embrittlement susceptibility was evaluated based on fracture strain in tensile testing. We conducted a thermal desorption analysis to measure the amount of tracer hydrogen corresponding to that of lattice defects. Hydrogen embrittlement susceptibility and the amount of tracer hydrogen significantly increased with decreasing crosshead speed. Additionally, a significant increase in the formation of hydrogen-enhanced strain-induced lattice defects was observed immediately before the final fracture. In contrast to hydrogen-free specimens, the fracture surface of the hydrogen-charged specimens exhibited shallower dimples without nuclei, such as secondary phase particles. These findings indicate that the presence of hydrogen enhanced the formation of lattice defects, particularly just prior to the occurrence of final fracture. This in turn enhanced the formation of shallower dimples, thereby potentially causing premature fracture of X80 pipeline steel at lower crosshead speeds.
7 schema:genre article
8 schema:isAccessibleForFree false
9 schema:isPartOf N8b124176a3bf4a729243192fc8d51860
10 Nf63d55e265934b99beb9c300c888422d
11 sg:journal.1042541
12 schema:keywords X80 pipeline steel
13 amount
14 analysis
15 contrast
16 crosshead speed
17 date
18 defects
19 desorption analysis
20 dimples
21 embrittlement
22 embrittlement susceptibility
23 factors
24 final fracture
25 findings
26 formation
27 fracture strain
28 fracture surfaces
29 fractures
30 hydrogen
31 hydrogen embrittlement
32 hydrogen embrittlement susceptibility
33 hydrogen-charged specimens
34 hydrogen-free specimens
35 increase
36 lattice defects
37 low crosshead speed
38 nucleus
39 occurrence
40 particles
41 phase particles
42 pipeline steel
43 premature fracture
44 presence
45 presence of hydrogen
46 role
47 secondary phase particles
48 shallow dimples
49 significant increase
50 specimens
51 speed
52 steel
53 strains
54 study
55 surface
56 susceptibility
57 tensile testing
58 testing
59 thermal desorption analysis
60 turn
61 schema:name The Role of Hydrogen-Enhanced Strain-Induced Lattice Defects on Hydrogen Embrittlement Susceptibility of X80 Pipeline Steel
62 schema:pagination 1375-1380
63 schema:productId N4732b11ed5ea4ab384c241bcce1c06da
64 Nbb9a32cee7e24f4381413eec0232dcca
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085420856
66 https://doi.org/10.1007/s11837-017-2371-1
67 schema:sdDatePublished 2022-09-02T16:00
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher N044a4e5d9b0e46c680fcbc71dc76d2d3
70 schema:url https://doi.org/10.1007/s11837-017-2371-1
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N044a4e5d9b0e46c680fcbc71dc76d2d3 schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 N108c40531bcc4bdaa5ce17ca99756051 schema:affiliation grid-institutes:grid.412681.8
77 schema:familyName Hattori
78 schema:givenName M.
79 rdf:type schema:Person
80 N2be90b95bf884177999273d41e6f103f rdf:first sg:person.014131552652.69
81 rdf:rest Na7da4d4a6f6d4fc38dfe9501aa768b31
82 N4732b11ed5ea4ab384c241bcce1c06da schema:name doi
83 schema:value 10.1007/s11837-017-2371-1
84 rdf:type schema:PropertyValue
85 N8b124176a3bf4a729243192fc8d51860 schema:volumeNumber 69
86 rdf:type schema:PublicationVolume
87 N8b1f312e7a7147ff8e7c371224d4c5ae rdf:first N108c40531bcc4bdaa5ce17ca99756051
88 rdf:rest Ne993c2646bce402997b0e27775633a16
89 Na7da4d4a6f6d4fc38dfe9501aa768b31 rdf:first sg:person.016155070417.42
90 rdf:rest rdf:nil
91 Nbb9a32cee7e24f4381413eec0232dcca schema:name dimensions_id
92 schema:value pub.1085420856
93 rdf:type schema:PropertyValue
94 Ne993c2646bce402997b0e27775633a16 rdf:first sg:person.012555337103.96
95 rdf:rest N2be90b95bf884177999273d41e6f103f
96 Nf63d55e265934b99beb9c300c888422d schema:issueNumber 8
97 rdf:type schema:PublicationIssue
98 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
99 schema:name Engineering
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
102 schema:name Materials Engineering
103 rdf:type schema:DefinedTerm
104 sg:journal.1042541 schema:issn 1047-4838
105 1543-1851
106 schema:name JOM
107 schema:publisher Springer Nature
108 rdf:type schema:Periodical
109 sg:person.012555337103.96 schema:affiliation grid-institutes:grid.412681.8
110 schema:familyName Suzuki
111 schema:givenName H.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012555337103.96
113 rdf:type schema:Person
114 sg:person.014131552652.69 schema:affiliation grid-institutes:grid.460109.a
115 schema:familyName Seko
116 schema:givenName Y.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014131552652.69
118 rdf:type schema:Person
119 sg:person.016155070417.42 schema:affiliation grid-institutes:grid.412681.8
120 schema:familyName Takai
121 schema:givenName K.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016155070417.42
123 rdf:type schema:Person
124 grid-institutes:grid.412681.8 schema:alternateName Department of Engineering and Applied Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554, Tokyo, Japan
125 Graduate School of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554, Tokyo, Japan
126 schema:name Department of Engineering and Applied Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554, Tokyo, Japan
127 Graduate School of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554, Tokyo, Japan
128 rdf:type schema:Organization
129 grid-institutes:grid.460109.a schema:alternateName Earthquake Engineering and Fracture Mechanics Laboratory, Fundamental Technology Research Institute, Tokyo Gas Co., Ltd., 230-0045, Yokohama, Japan
130 schema:name Earthquake Engineering and Fracture Mechanics Laboratory, Fundamental Technology Research Institute, Tokyo Gas Co., Ltd., 230-0045, Yokohama, Japan
131 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...