Theoretical and Experimental Investigations of the Process of Vibration Treatment of Liquid Metals Containing Nanoparticles View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-10-12

AUTHORS

S. Vorozhtsov, O. Kudryashova, V. Promakhov, V. Dammer, A. Vorozhtsov

ABSTRACT

It is known that the use of external effects, such as acoustic fields (from ultrasonic to low-frequency range), help in breaking down agglomerates, improving particle wettability, providing uniform particle distribution in the melt volume, and reducing the grain size. The fragmentation of growing crystals, de-agglomeration of particles and their mixing in liquid metal under the influence of vibration (with frequencies of 10–100 Hz) are considered in this paper. The major advantage of such a technique in comparison with high-frequency methods (sonic, ultrasonic) is the capability of processing large melt volumes proportional to the wavelength. The mechanisms of the breaking down of particle agglomerates and the mixing of particles under conditions of cavitation and turbulence during the vibration treatment of the melt are considered. Expressions linking the threshold intensity and frequency with the amplitude necessary to activate mechanisms of turbulence and cavitation were obtained. The results of vibration treatment experiments for an aluminum alloy containing diamond nanoparticles are given. This treatment makes it possible to significantly reduce the grain size and to improve the casting homogeneity and thus improve the mechanical properties of the alloy. More... »

PAGES

3094-3100

References to SciGraph publications

  • 2016-03-02. The Influence of Al4C3 Nanoparticles on the Physical and Mechanical Properties of Metal Matrix Composites at High Temperatures in JOM
  • 1988-11. Behavior of ceramic particles at the solid- liquid metal interface in metal matrix composites in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2015-03-14. The Physical-Mechanical and Electrical Properties of Cast Aluminum-Based Alloys Reinforced with Diamond Nanoparticles in RUSSIAN PHYSICS JOURNAL
  • 2016-02-26. On the Mechanism of Ultrasound-Driven Deagglomeration of Nanoparticle Agglomerates in Aluminum Melt in JOM
  • 2014-04-05. Functional Metal Matrix Composites: Self-lubricating, Self-healing, and Nanocomposites-An Outlook in JOM
  • 2015-07-21. Effects of vibration frequency on microstructure, mechanical properties, and fracture behavior of A356 aluminum alloy obtained by expendable pattern shell casting in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2012-02. Pseudocavitation during low-frequency treatment of melts in RUSSIAN METALLURGY (METALLY)
  • 2007-03. Application of self-propagating high-temperature synthesis and mechanical activation for obtaining nanocomposites in COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • 2015-03-20. The Application of External Fields to the Manufacturing of Novel Dense Composite Master Alloys and Aluminum-Based Nanocomposites in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2014-11. Principal distinction of the methods of low-frequency and ultrasonic effects on melts in RUSSIAN JOURNAL OF NON-FERROUS METALS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11837-016-2147-z

    DOI

    http://dx.doi.org/10.1007/s11837-016-2147-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1042536435


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Strength Physics and Materials Science SB RAS, 634021, Tomsk, Russian Federation", 
              "id": "http://www.grid.ac/institutes/grid.467103.7", 
              "name": [
                "National Research Tomsk State University, 634050, Tomsk, Russian Federation", 
                "Institute of Strength Physics and Materials Science SB RAS, 634021, Tomsk, Russian Federation"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vorozhtsov", 
            "givenName": "S.", 
            "id": "sg:person.010552241521.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010552241521.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Problems of Chemical & Energetic Technologies SB RAS, 659322, Biysk, Russian Federation", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "National Research Tomsk State University, 634050, Tomsk, Russian Federation", 
                "Institute for Problems of Chemical & Energetic Technologies SB RAS, 659322, Biysk, Russian Federation"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kudryashova", 
            "givenName": "O.", 
            "id": "sg:person.011002610413.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011002610413.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Research Tomsk State University, 634050, Tomsk, Russian Federation", 
              "id": "http://www.grid.ac/institutes/grid.77602.34", 
              "name": [
                "National Research Tomsk State University, 634050, Tomsk, Russian Federation"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Promakhov", 
            "givenName": "V.", 
            "id": "sg:person.015064233310.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015064233310.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Research Tomsk State University, 634050, Tomsk, Russian Federation", 
              "id": "http://www.grid.ac/institutes/grid.77602.34", 
              "name": [
                "National Research Tomsk State University, 634050, Tomsk, Russian Federation"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dammer", 
            "givenName": "V.", 
            "id": "sg:person.016340354075.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016340354075.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Problems of Chemical & Energetic Technologies SB RAS, 659322, Biysk, Russian Federation", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "National Research Tomsk State University, 634050, Tomsk, Russian Federation", 
                "Institute for Problems of Chemical & Energetic Technologies SB RAS, 659322, Biysk, Russian Federation"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vorozhtsov", 
            "givenName": "A.", 
            "id": "sg:person.0771536125.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771536125.70"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10573-007-0024-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043316235", 
              "https://doi.org/10.1007/s10573-007-0024-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11182-015-0412-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051018807", 
              "https://doi.org/10.1007/s11182-015-0412-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11837-014-0948-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031160952", 
              "https://doi.org/10.1007/s11837-014-0948-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11837-016-1854-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004695885", 
              "https://doi.org/10.1007/s11837-016-1854-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-015-2850-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022718668", 
              "https://doi.org/10.1007/s11661-015-2850-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-015-7586-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046322782", 
              "https://doi.org/10.1007/s00170-015-7586-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3103/s1067821214060091", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018853045", 
              "https://doi.org/10.3103/s1067821214060091"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02645819", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019793928", 
              "https://doi.org/10.1007/bf02645819"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11837-016-1851-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001086409", 
              "https://doi.org/10.1007/s11837-016-1851-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s003602951202005x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039641353", 
              "https://doi.org/10.1134/s003602951202005x"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-10-12", 
        "datePublishedReg": "2016-10-12", 
        "description": "It is known that the use of external effects, such as acoustic fields (from ultrasonic to low-frequency range), help in breaking down agglomerates, improving particle wettability, providing uniform particle distribution in the melt volume, and reducing the grain size. The fragmentation of growing crystals, de-agglomeration of particles and their mixing in liquid metal under the influence of vibration (with frequencies of 10\u2013100\u00a0Hz) are considered in this paper. The major advantage of such a technique in comparison with high-frequency methods (sonic, ultrasonic) is the capability of processing large melt volumes proportional to the wavelength. The mechanisms of the breaking down of particle agglomerates and the mixing of particles under conditions of cavitation and turbulence during the vibration treatment of the melt are considered. Expressions linking the threshold intensity and frequency with the amplitude necessary to activate mechanisms of turbulence and cavitation were obtained. The results of vibration treatment experiments for an aluminum alloy containing diamond nanoparticles are given. This treatment makes it possible to significantly reduce the grain size and to improve the casting homogeneity and thus improve the mechanical properties of the alloy.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11837-016-2147-z", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1042541", 
            "issn": [
              "1047-4838", 
              "1543-1851"
            ], 
            "name": "JOM", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "68"
          }
        ], 
        "keywords": [
          "liquid metal", 
          "grain size", 
          "conditions of cavitation", 
          "mixing of particles", 
          "uniform particle distribution", 
          "influence of vibration", 
          "vibration treatment", 
          "mechanism of turbulence", 
          "high-frequency method", 
          "aluminum alloy", 
          "mechanical properties", 
          "particle wettability", 
          "large melt volumes", 
          "particle agglomerates", 
          "acoustic field", 
          "experimental investigation", 
          "particle distribution", 
          "melt volume", 
          "alloy", 
          "diamond nanoparticles", 
          "agglomerates", 
          "turbulence", 
          "treatment experiments", 
          "cavitation", 
          "mixing", 
          "particles", 
          "nanoparticles", 
          "metals", 
          "wettability", 
          "major advantage", 
          "vibration", 
          "melt", 
          "external effects", 
          "size", 
          "capability", 
          "properties", 
          "wavelength", 
          "volume", 
          "amplitude", 
          "field", 
          "advantages", 
          "technique", 
          "influence", 
          "process", 
          "conditions", 
          "method", 
          "experiments", 
          "frequency", 
          "investigation", 
          "crystals", 
          "distribution", 
          "threshold intensity", 
          "mechanism", 
          "breaking", 
          "results", 
          "homogeneity", 
          "comparison", 
          "intensity", 
          "effect", 
          "use", 
          "treatment", 
          "fragmentation", 
          "expression", 
          "paper"
        ], 
        "name": "Theoretical and Experimental Investigations of the Process of Vibration Treatment of Liquid Metals Containing Nanoparticles", 
        "pagination": "3094-3100", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1042536435"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11837-016-2147-z"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11837-016-2147-z", 
          "https://app.dimensions.ai/details/publication/pub.1042536435"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-10T10:17", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_709.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11837-016-2147-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11837-016-2147-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11837-016-2147-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11837-016-2147-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11837-016-2147-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    198 TRIPLES      22 PREDICATES      99 URIs      81 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11837-016-2147-z schema:about anzsrc-for:09
    2 anzsrc-for:0915
    3 schema:author N91db0af7d4304b739168712de9cf8a94
    4 schema:citation sg:pub.10.1007/bf02645819
    5 sg:pub.10.1007/s00170-015-7586-0
    6 sg:pub.10.1007/s10573-007-0024-3
    7 sg:pub.10.1007/s11182-015-0412-1
    8 sg:pub.10.1007/s11661-015-2850-3
    9 sg:pub.10.1007/s11837-014-0948-5
    10 sg:pub.10.1007/s11837-016-1851-z
    11 sg:pub.10.1007/s11837-016-1854-9
    12 sg:pub.10.1134/s003602951202005x
    13 sg:pub.10.3103/s1067821214060091
    14 schema:datePublished 2016-10-12
    15 schema:datePublishedReg 2016-10-12
    16 schema:description It is known that the use of external effects, such as acoustic fields (from ultrasonic to low-frequency range), help in breaking down agglomerates, improving particle wettability, providing uniform particle distribution in the melt volume, and reducing the grain size. The fragmentation of growing crystals, de-agglomeration of particles and their mixing in liquid metal under the influence of vibration (with frequencies of 10–100 Hz) are considered in this paper. The major advantage of such a technique in comparison with high-frequency methods (sonic, ultrasonic) is the capability of processing large melt volumes proportional to the wavelength. The mechanisms of the breaking down of particle agglomerates and the mixing of particles under conditions of cavitation and turbulence during the vibration treatment of the melt are considered. Expressions linking the threshold intensity and frequency with the amplitude necessary to activate mechanisms of turbulence and cavitation were obtained. The results of vibration treatment experiments for an aluminum alloy containing diamond nanoparticles are given. This treatment makes it possible to significantly reduce the grain size and to improve the casting homogeneity and thus improve the mechanical properties of the alloy.
    17 schema:genre article
    18 schema:inLanguage en
    19 schema:isAccessibleForFree false
    20 schema:isPartOf N21319cf8a32d4d348ebae31c571e3279
    21 Nbdf81791389b4011893bfddeeb81b588
    22 sg:journal.1042541
    23 schema:keywords acoustic field
    24 advantages
    25 agglomerates
    26 alloy
    27 aluminum alloy
    28 amplitude
    29 breaking
    30 capability
    31 cavitation
    32 comparison
    33 conditions
    34 conditions of cavitation
    35 crystals
    36 diamond nanoparticles
    37 distribution
    38 effect
    39 experimental investigation
    40 experiments
    41 expression
    42 external effects
    43 field
    44 fragmentation
    45 frequency
    46 grain size
    47 high-frequency method
    48 homogeneity
    49 influence
    50 influence of vibration
    51 intensity
    52 investigation
    53 large melt volumes
    54 liquid metal
    55 major advantage
    56 mechanical properties
    57 mechanism
    58 mechanism of turbulence
    59 melt
    60 melt volume
    61 metals
    62 method
    63 mixing
    64 mixing of particles
    65 nanoparticles
    66 paper
    67 particle agglomerates
    68 particle distribution
    69 particle wettability
    70 particles
    71 process
    72 properties
    73 results
    74 size
    75 technique
    76 threshold intensity
    77 treatment
    78 treatment experiments
    79 turbulence
    80 uniform particle distribution
    81 use
    82 vibration
    83 vibration treatment
    84 volume
    85 wavelength
    86 wettability
    87 schema:name Theoretical and Experimental Investigations of the Process of Vibration Treatment of Liquid Metals Containing Nanoparticles
    88 schema:pagination 3094-3100
    89 schema:productId N03e075abaec545278e2112b73b0c619c
    90 Nbe689fe23b7e48be9abc8a627c4242e0
    91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042536435
    92 https://doi.org/10.1007/s11837-016-2147-z
    93 schema:sdDatePublished 2022-05-10T10:17
    94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    95 schema:sdPublisher Nc1811b0de2b84eaf86f1b6c565e5c7e6
    96 schema:url https://doi.org/10.1007/s11837-016-2147-z
    97 sgo:license sg:explorer/license/
    98 sgo:sdDataset articles
    99 rdf:type schema:ScholarlyArticle
    100 N03e075abaec545278e2112b73b0c619c schema:name doi
    101 schema:value 10.1007/s11837-016-2147-z
    102 rdf:type schema:PropertyValue
    103 N06b316464ca84fd1ac3ec9cbab2366b6 rdf:first sg:person.016340354075.88
    104 rdf:rest N9199592e69124a1bbab2363ebcdb2ec6
    105 N1db22b74594d4c9bbab3647b8632ad23 rdf:first sg:person.015064233310.35
    106 rdf:rest N06b316464ca84fd1ac3ec9cbab2366b6
    107 N21319cf8a32d4d348ebae31c571e3279 schema:issueNumber 12
    108 rdf:type schema:PublicationIssue
    109 N25b592025e0d48dda1255ac2a6c088e5 rdf:first sg:person.011002610413.39
    110 rdf:rest N1db22b74594d4c9bbab3647b8632ad23
    111 N9199592e69124a1bbab2363ebcdb2ec6 rdf:first sg:person.0771536125.70
    112 rdf:rest rdf:nil
    113 N91db0af7d4304b739168712de9cf8a94 rdf:first sg:person.010552241521.39
    114 rdf:rest N25b592025e0d48dda1255ac2a6c088e5
    115 Nbdf81791389b4011893bfddeeb81b588 schema:volumeNumber 68
    116 rdf:type schema:PublicationVolume
    117 Nbe689fe23b7e48be9abc8a627c4242e0 schema:name dimensions_id
    118 schema:value pub.1042536435
    119 rdf:type schema:PropertyValue
    120 Nc1811b0de2b84eaf86f1b6c565e5c7e6 schema:name Springer Nature - SN SciGraph project
    121 rdf:type schema:Organization
    122 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    123 schema:name Engineering
    124 rdf:type schema:DefinedTerm
    125 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Interdisciplinary Engineering
    127 rdf:type schema:DefinedTerm
    128 sg:journal.1042541 schema:issn 1047-4838
    129 1543-1851
    130 schema:name JOM
    131 schema:publisher Springer Nature
    132 rdf:type schema:Periodical
    133 sg:person.010552241521.39 schema:affiliation grid-institutes:grid.467103.7
    134 schema:familyName Vorozhtsov
    135 schema:givenName S.
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010552241521.39
    137 rdf:type schema:Person
    138 sg:person.011002610413.39 schema:affiliation grid-institutes:None
    139 schema:familyName Kudryashova
    140 schema:givenName O.
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011002610413.39
    142 rdf:type schema:Person
    143 sg:person.015064233310.35 schema:affiliation grid-institutes:grid.77602.34
    144 schema:familyName Promakhov
    145 schema:givenName V.
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015064233310.35
    147 rdf:type schema:Person
    148 sg:person.016340354075.88 schema:affiliation grid-institutes:grid.77602.34
    149 schema:familyName Dammer
    150 schema:givenName V.
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016340354075.88
    152 rdf:type schema:Person
    153 sg:person.0771536125.70 schema:affiliation grid-institutes:None
    154 schema:familyName Vorozhtsov
    155 schema:givenName A.
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771536125.70
    157 rdf:type schema:Person
    158 sg:pub.10.1007/bf02645819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019793928
    159 https://doi.org/10.1007/bf02645819
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/s00170-015-7586-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046322782
    162 https://doi.org/10.1007/s00170-015-7586-0
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/s10573-007-0024-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043316235
    165 https://doi.org/10.1007/s10573-007-0024-3
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/s11182-015-0412-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051018807
    168 https://doi.org/10.1007/s11182-015-0412-1
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/s11661-015-2850-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022718668
    171 https://doi.org/10.1007/s11661-015-2850-3
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/s11837-014-0948-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031160952
    174 https://doi.org/10.1007/s11837-014-0948-5
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/s11837-016-1851-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1001086409
    177 https://doi.org/10.1007/s11837-016-1851-z
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/s11837-016-1854-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004695885
    180 https://doi.org/10.1007/s11837-016-1854-9
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1134/s003602951202005x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039641353
    183 https://doi.org/10.1134/s003602951202005x
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.3103/s1067821214060091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018853045
    186 https://doi.org/10.3103/s1067821214060091
    187 rdf:type schema:CreativeWork
    188 grid-institutes:None schema:alternateName Institute for Problems of Chemical & Energetic Technologies SB RAS, 659322, Biysk, Russian Federation
    189 schema:name Institute for Problems of Chemical & Energetic Technologies SB RAS, 659322, Biysk, Russian Federation
    190 National Research Tomsk State University, 634050, Tomsk, Russian Federation
    191 rdf:type schema:Organization
    192 grid-institutes:grid.467103.7 schema:alternateName Institute of Strength Physics and Materials Science SB RAS, 634021, Tomsk, Russian Federation
    193 schema:name Institute of Strength Physics and Materials Science SB RAS, 634021, Tomsk, Russian Federation
    194 National Research Tomsk State University, 634050, Tomsk, Russian Federation
    195 rdf:type schema:Organization
    196 grid-institutes:grid.77602.34 schema:alternateName National Research Tomsk State University, 634050, Tomsk, Russian Federation
    197 schema:name National Research Tomsk State University, 634050, Tomsk, Russian Federation
    198 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...