The Influence of ScF3 Nanoparticles on the Physical and Mechanical Properties of New Metal Matrix Composites Based on A356 Aluminum ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-10-11

AUTHORS

S. Vorozhtsov, I. Zhukov, V. Promakhov, E. Naydenkin, A. Khrustalyov, A. Vorozhtsov

ABSTRACT

Abstarct The development of the aerospace and automotive industries demands the development of aluminum alloys and composites reinforced with new nanoparticles. In this work, metal matrix composites (MMC) with an A356 aluminum alloy matrix reinforced with 0.2 wt.% and 1 wt.% of ScF3 nanoparticles were produced by ultrasonic dispersion of nanoparticles in the melt followed by casting in a metallic mold. Structure as well as physical and mechanical properties of the cast samples were examined using electron and optical microscopy, hardness and tensile testing. It is shown that nanoparticles clusters are formed during the solidification at grain boundaries and silicon inclusions. Increasing nanoparticles content significantly reduced the grain size in the MMC and increased the mechanical properties—ultimate tensile strength, elongation and hardness. The contribution of different strengthening mechanisms is discussed. It is suggested that the coefficient of thermal expansion mismatch between the nanoparticles ScF3 and the aluminum matrix is a dominant strengthening mechanism. More... »

PAGES

3101-3106

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11837-016-2141-5

DOI

http://dx.doi.org/10.1007/s11837-016-2141-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019306806


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Strength Physics and Materials Sciences SB RAS, 634055, Tomsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.467103.7", 
          "name": [
            "National Research Tomsk State University, 634050, Tomsk, Russia", 
            "Institute of Strength Physics and Materials Sciences SB RAS, 634055, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vorozhtsov", 
        "givenName": "S.", 
        "id": "sg:person.010552241521.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010552241521.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research Tomsk State University, 634050, Tomsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "National Research Tomsk State University, 634050, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhukov", 
        "givenName": "I.", 
        "id": "sg:person.07644463311.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07644463311.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research Tomsk State University, 634050, Tomsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "National Research Tomsk State University, 634050, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Promakhov", 
        "givenName": "V.", 
        "id": "sg:person.015064233310.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015064233310.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Strength Physics and Materials Sciences SB RAS, 634055, Tomsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.467103.7", 
          "name": [
            "National Research Tomsk State University, 634050, Tomsk, Russia", 
            "Institute of Strength Physics and Materials Sciences SB RAS, 634055, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Naydenkin", 
        "givenName": "E.", 
        "id": "sg:person.013110620233.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013110620233.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research Tomsk State University, 634050, Tomsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "National Research Tomsk State University, 634050, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khrustalyov", 
        "givenName": "A.", 
        "id": "sg:person.013301475534.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013301475534.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research Tomsk State University, 634050, Tomsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "National Research Tomsk State University, 634050, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vorozhtsov", 
        "givenName": "A.", 
        "id": "sg:person.0771536125.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771536125.70"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11661-015-2850-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022718668", 
          "https://doi.org/10.1007/s11661-015-2850-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-016-1851-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001086409", 
          "https://doi.org/10.1007/s11837-016-1851-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11182-015-0412-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051018807", 
          "https://doi.org/10.1007/s11182-015-0412-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-012-0245-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003721291", 
          "https://doi.org/10.1007/s11837-012-0245-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00353120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019583821", 
          "https://doi.org/10.1007/bf00353120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1004549221595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000204109", 
          "https://doi.org/10.1023/a:1004549221595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-016-1854-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004695885", 
          "https://doi.org/10.1007/s11837-016-1854-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-011-6143-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017529901", 
          "https://doi.org/10.1007/s10853-011-6143-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1006717231509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023423242", 
          "https://doi.org/10.1023/a:1006717231509"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-10-11", 
    "datePublishedReg": "2016-10-11", 
    "description": "Abstarct\nThe development of the aerospace and automotive industries demands the development of aluminum alloys and composites reinforced with new nanoparticles. In this work, metal matrix composites (MMC) with an A356 aluminum alloy matrix reinforced with 0.2\u00a0wt.% and 1\u00a0wt.% of ScF3 nanoparticles were produced by ultrasonic dispersion of nanoparticles in the melt followed by casting in a metallic mold. Structure as well as physical and mechanical properties of the cast samples were examined using electron and optical microscopy, hardness and tensile testing. It is shown that nanoparticles clusters are formed during the solidification at grain boundaries and silicon inclusions. Increasing nanoparticles content significantly reduced the grain size in the MMC and increased the mechanical properties\u2014ultimate tensile strength, elongation and hardness. The contribution of different strengthening mechanisms is discussed. It is suggested that the coefficient of thermal expansion mismatch between the nanoparticles ScF3 and the aluminum matrix is a dominant strengthening mechanism.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11837-016-2141-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042541", 
        "issn": [
          "1047-4838", 
          "1543-1851"
        ], 
        "name": "JOM", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "68"
      }
    ], 
    "keywords": [
      "metal matrix composites", 
      "matrix composites", 
      "aluminum alloy", 
      "strengthening mechanism", 
      "A356 aluminum alloy matrix", 
      "mechanical properties", 
      "new metal matrix composites", 
      "new nanoparticles", 
      "nanoparticle clusters", 
      "nanoparticle content", 
      "aluminum alloy matrix", 
      "dominant strengthening mechanism", 
      "different strengthening mechanisms", 
      "thermal expansion mismatch", 
      "A356 aluminum alloy", 
      "nanoparticles", 
      "silicon inclusions", 
      "expansion mismatch", 
      "alloy matrix", 
      "aluminum matrix", 
      "ultrasonic dispersion", 
      "metallic mold", 
      "tensile testing", 
      "cast samples", 
      "tensile strength", 
      "grain boundaries", 
      "automotive industry", 
      "grain size", 
      "composites", 
      "optical microscopy", 
      "alloy", 
      "hardness", 
      "microscopy", 
      "aerospace", 
      "wt", 
      "solidification", 
      "properties", 
      "matrix", 
      "dispersion", 
      "mold", 
      "strength", 
      "melt", 
      "electrons", 
      "size", 
      "elongation", 
      "coefficient", 
      "boundaries", 
      "mismatch", 
      "industry", 
      "structure", 
      "influence", 
      "work", 
      "ScF3", 
      "development", 
      "testing", 
      "mechanism", 
      "content", 
      "samples", 
      "clusters", 
      "contribution", 
      "inclusion", 
      "Abstarct", 
      "ScF3 nanoparticles", 
      "mechanical properties\u2014ultimate tensile strength", 
      "properties\u2014ultimate tensile strength", 
      "nanoparticles ScF3"
    ], 
    "name": "The Influence of ScF3 Nanoparticles on the Physical and Mechanical Properties of New Metal Matrix Composites Based on A356 Aluminum Alloy", 
    "pagination": "3101-3106", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019306806"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11837-016-2141-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11837-016-2141-5", 
      "https://app.dimensions.ai/details/publication/pub.1019306806"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_700.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11837-016-2141-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11837-016-2141-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11837-016-2141-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11837-016-2141-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11837-016-2141-5'


 

This table displays all metadata directly associated to this object as RDF triples.

199 TRIPLES      22 PREDICATES      100 URIs      83 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11837-016-2141-5 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nd7cc6af80db94c4680a274556800b1b0
4 schema:citation sg:pub.10.1007/bf00353120
5 sg:pub.10.1007/s10853-011-6143-y
6 sg:pub.10.1007/s11182-015-0412-1
7 sg:pub.10.1007/s11661-015-2850-3
8 sg:pub.10.1007/s11837-012-0245-0
9 sg:pub.10.1007/s11837-016-1851-z
10 sg:pub.10.1007/s11837-016-1854-9
11 sg:pub.10.1023/a:1004549221595
12 sg:pub.10.1023/a:1006717231509
13 schema:datePublished 2016-10-11
14 schema:datePublishedReg 2016-10-11
15 schema:description Abstarct The development of the aerospace and automotive industries demands the development of aluminum alloys and composites reinforced with new nanoparticles. In this work, metal matrix composites (MMC) with an A356 aluminum alloy matrix reinforced with 0.2 wt.% and 1 wt.% of ScF3 nanoparticles were produced by ultrasonic dispersion of nanoparticles in the melt followed by casting in a metallic mold. Structure as well as physical and mechanical properties of the cast samples were examined using electron and optical microscopy, hardness and tensile testing. It is shown that nanoparticles clusters are formed during the solidification at grain boundaries and silicon inclusions. Increasing nanoparticles content significantly reduced the grain size in the MMC and increased the mechanical properties—ultimate tensile strength, elongation and hardness. The contribution of different strengthening mechanisms is discussed. It is suggested that the coefficient of thermal expansion mismatch between the nanoparticles ScF3 and the aluminum matrix is a dominant strengthening mechanism.
16 schema:genre article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N2580d839ed804fdd942da4d0302e6fbd
20 N296fa176836640c6a9e2380addffb4c9
21 sg:journal.1042541
22 schema:keywords A356 aluminum alloy
23 A356 aluminum alloy matrix
24 Abstarct
25 ScF3
26 ScF3 nanoparticles
27 aerospace
28 alloy
29 alloy matrix
30 aluminum alloy
31 aluminum alloy matrix
32 aluminum matrix
33 automotive industry
34 boundaries
35 cast samples
36 clusters
37 coefficient
38 composites
39 content
40 contribution
41 development
42 different strengthening mechanisms
43 dispersion
44 dominant strengthening mechanism
45 electrons
46 elongation
47 expansion mismatch
48 grain boundaries
49 grain size
50 hardness
51 inclusion
52 industry
53 influence
54 matrix
55 matrix composites
56 mechanical properties
57 mechanical properties—ultimate tensile strength
58 mechanism
59 melt
60 metal matrix composites
61 metallic mold
62 microscopy
63 mismatch
64 mold
65 nanoparticle clusters
66 nanoparticle content
67 nanoparticles
68 nanoparticles ScF3
69 new metal matrix composites
70 new nanoparticles
71 optical microscopy
72 properties
73 properties—ultimate tensile strength
74 samples
75 silicon inclusions
76 size
77 solidification
78 strength
79 strengthening mechanism
80 structure
81 tensile strength
82 tensile testing
83 testing
84 thermal expansion mismatch
85 ultrasonic dispersion
86 work
87 wt
88 schema:name The Influence of ScF3 Nanoparticles on the Physical and Mechanical Properties of New Metal Matrix Composites Based on A356 Aluminum Alloy
89 schema:pagination 3101-3106
90 schema:productId N3018c49584004b6abdfdf6e360df72fa
91 Ne684caa8ea584d7b9b16592323b4a373
92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019306806
93 https://doi.org/10.1007/s11837-016-2141-5
94 schema:sdDatePublished 2021-12-01T19:37
95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
96 schema:sdPublisher N68cd83b242b94b9194305d2ff4c828cc
97 schema:url https://doi.org/10.1007/s11837-016-2141-5
98 sgo:license sg:explorer/license/
99 sgo:sdDataset articles
100 rdf:type schema:ScholarlyArticle
101 N2580d839ed804fdd942da4d0302e6fbd schema:volumeNumber 68
102 rdf:type schema:PublicationVolume
103 N296fa176836640c6a9e2380addffb4c9 schema:issueNumber 12
104 rdf:type schema:PublicationIssue
105 N3018c49584004b6abdfdf6e360df72fa schema:name dimensions_id
106 schema:value pub.1019306806
107 rdf:type schema:PropertyValue
108 N3667ef9dafb1463186fa31b238825f29 rdf:first sg:person.07644463311.12
109 rdf:rest N4b2bd34836a84763af3e3c4afdc6f7a1
110 N4b2bd34836a84763af3e3c4afdc6f7a1 rdf:first sg:person.015064233310.35
111 rdf:rest Nf8de976fcecd4499b9b54f548757dd41
112 N68cd83b242b94b9194305d2ff4c828cc schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 N87f9b978bd8a49e6b4848b57422fd41a rdf:first sg:person.0771536125.70
115 rdf:rest rdf:nil
116 Nd7cc6af80db94c4680a274556800b1b0 rdf:first sg:person.010552241521.39
117 rdf:rest N3667ef9dafb1463186fa31b238825f29
118 Ne684caa8ea584d7b9b16592323b4a373 schema:name doi
119 schema:value 10.1007/s11837-016-2141-5
120 rdf:type schema:PropertyValue
121 Nf5dce369b1e045d3a706ada4e5fada86 rdf:first sg:person.013301475534.15
122 rdf:rest N87f9b978bd8a49e6b4848b57422fd41a
123 Nf8de976fcecd4499b9b54f548757dd41 rdf:first sg:person.013110620233.02
124 rdf:rest Nf5dce369b1e045d3a706ada4e5fada86
125 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
126 schema:name Engineering
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
129 schema:name Materials Engineering
130 rdf:type schema:DefinedTerm
131 sg:journal.1042541 schema:issn 1047-4838
132 1543-1851
133 schema:name JOM
134 schema:publisher Springer Nature
135 rdf:type schema:Periodical
136 sg:person.010552241521.39 schema:affiliation grid-institutes:grid.467103.7
137 schema:familyName Vorozhtsov
138 schema:givenName S.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010552241521.39
140 rdf:type schema:Person
141 sg:person.013110620233.02 schema:affiliation grid-institutes:grid.467103.7
142 schema:familyName Naydenkin
143 schema:givenName E.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013110620233.02
145 rdf:type schema:Person
146 sg:person.013301475534.15 schema:affiliation grid-institutes:grid.77602.34
147 schema:familyName Khrustalyov
148 schema:givenName A.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013301475534.15
150 rdf:type schema:Person
151 sg:person.015064233310.35 schema:affiliation grid-institutes:grid.77602.34
152 schema:familyName Promakhov
153 schema:givenName V.
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015064233310.35
155 rdf:type schema:Person
156 sg:person.07644463311.12 schema:affiliation grid-institutes:grid.77602.34
157 schema:familyName Zhukov
158 schema:givenName I.
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07644463311.12
160 rdf:type schema:Person
161 sg:person.0771536125.70 schema:affiliation grid-institutes:grid.77602.34
162 schema:familyName Vorozhtsov
163 schema:givenName A.
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771536125.70
165 rdf:type schema:Person
166 sg:pub.10.1007/bf00353120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019583821
167 https://doi.org/10.1007/bf00353120
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/s10853-011-6143-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1017529901
170 https://doi.org/10.1007/s10853-011-6143-y
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/s11182-015-0412-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051018807
173 https://doi.org/10.1007/s11182-015-0412-1
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/s11661-015-2850-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022718668
176 https://doi.org/10.1007/s11661-015-2850-3
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/s11837-012-0245-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003721291
179 https://doi.org/10.1007/s11837-012-0245-0
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/s11837-016-1851-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1001086409
182 https://doi.org/10.1007/s11837-016-1851-z
183 rdf:type schema:CreativeWork
184 sg:pub.10.1007/s11837-016-1854-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004695885
185 https://doi.org/10.1007/s11837-016-1854-9
186 rdf:type schema:CreativeWork
187 sg:pub.10.1023/a:1004549221595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000204109
188 https://doi.org/10.1023/a:1004549221595
189 rdf:type schema:CreativeWork
190 sg:pub.10.1023/a:1006717231509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023423242
191 https://doi.org/10.1023/a:1006717231509
192 rdf:type schema:CreativeWork
193 grid-institutes:grid.467103.7 schema:alternateName Institute of Strength Physics and Materials Sciences SB RAS, 634055, Tomsk, Russia
194 schema:name Institute of Strength Physics and Materials Sciences SB RAS, 634055, Tomsk, Russia
195 National Research Tomsk State University, 634050, Tomsk, Russia
196 rdf:type schema:Organization
197 grid-institutes:grid.77602.34 schema:alternateName National Research Tomsk State University, 634050, Tomsk, Russia
198 schema:name National Research Tomsk State University, 634050, Tomsk, Russia
199 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...