Dislocation Nucleation in Nickel-Graphene Nanocomposites Under Mode I Loading View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-07

AUTHORS

Scott E. Muller, Arun K. Nair

ABSTRACT

Graphene has superior mechanical properties, and previous studies have shown that it can be used as a fiber laminate in metal-graphene nanocomposites. Our research outlines the advantages and disadvantages of different Ni-graphene nanocomposite laminates. Using molecular dynamics, Ni-graphene nanocomposites are studied under mode I loading normal to the graphene laminate plane. The stress intensity factor (KI) is predicted for the nanocomposite at varying distances between a simulated crack and the graphene sheet(s) in the Ni-matrix. We find that KI of the Ni-matrix is reduced with the addition of graphene sheet. However, for a single graphene sheet in the Ni-matrix, KI increases with increased spacing between the crack and the graphene sheet. This is due to the change in the crack-generated stress field in the region between the Ni-matrix containing the crack and the graphene sheet, which leads to the lower stress values at which dislocation nucleation occurs compared to single-crystal Ni. For multiple layers of graphene sheets in the Ni-matrix, we find that failure occurs exclusively by delamination at a lower stress than the one-layer case. This research concludes that fabricated Ni-graphene nanocomposites can be tuned for optimal fracture strength by the structural arrangement of graphene sheets within the Ni-matrix. More... »

PAGES

1909-1914

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11837-016-1941-y

DOI

http://dx.doi.org/10.1007/s11837-016-1941-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023452101


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Arkansas at Fayetteville", 
          "id": "https://www.grid.ac/institutes/grid.411017.2", 
          "name": [
            "Multiscale Materials Modeling Lab, Department of Mechanical Engineering, University of Arkansas, 72701, Fayetteville, AR, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Muller", 
        "givenName": "Scott E.", 
        "id": "sg:person.013240647116.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013240647116.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Arkansas at Fayetteville", 
          "id": "https://www.grid.ac/institutes/grid.411017.2", 
          "name": [
            "Multiscale Materials Modeling Lab, Department of Mechanical Engineering, University of Arkansas, 72701, Fayetteville, AR, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nair", 
        "givenName": "Arun K.", 
        "id": "sg:person.01070071306.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070071306.95"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.1171245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006821145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1171245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006821145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1158877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010593797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1158877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010593797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0965-0393/18/1/015012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011538065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0965-0393/18/1/015012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011538065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1102896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019008412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019317957", 
          "https://doi.org/10.1038/ncomms3114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/45/44/445302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019694815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022328266", 
          "https://doi.org/10.1038/nnano.2010.132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022328266", 
          "https://doi.org/10.1038/nnano.2010.132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl080649i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027087154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl080649i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027087154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compscitech.2012.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029252816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2008.215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032209533", 
          "https://doi.org/10.1038/nnano.2008.215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp060936f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033316831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp060936f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033316831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcph.1995.1039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034822855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.susc.2003.08.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035310379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.susc.2003.08.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035310379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0965-0393/20/7/075004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041566060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/24/24/245301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044337063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09500839.2012.759293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048206670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052791836", 
          "https://doi.org/10.1038/nmat1849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3245303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057923868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.481208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058078170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.035405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060623588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.035405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060623588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.50.1285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060788409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.50.1285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060788409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.4694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.4694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811207"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-07", 
    "datePublishedReg": "2016-07-01", 
    "description": "Graphene has superior mechanical properties, and previous studies have shown that it can be used as a fiber laminate in metal-graphene nanocomposites. Our research outlines the advantages and disadvantages of different Ni-graphene nanocomposite laminates. Using molecular dynamics, Ni-graphene nanocomposites are studied under mode I loading normal to the graphene laminate plane. The stress intensity factor (KI) is predicted for the nanocomposite at varying distances between a simulated crack and the graphene sheet(s) in the Ni-matrix. We find that KI of the Ni-matrix is reduced with the addition of graphene sheet. However, for a single graphene sheet in the Ni-matrix, KI increases with increased spacing between the crack and the graphene sheet. This is due to the change in the crack-generated stress field in the region between the Ni-matrix containing the crack and the graphene sheet, which leads to the lower stress values at which dislocation nucleation occurs compared to single-crystal Ni. For multiple layers of graphene sheets in the Ni-matrix, we find that failure occurs exclusively by delamination at a lower stress than the one-layer case. This research concludes that fabricated Ni-graphene nanocomposites can be tuned for optimal fracture strength by the structural arrangement of graphene sheets within the Ni-matrix.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11837-016-1941-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3110264", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2997991", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3110932", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1042541", 
        "issn": [
          "1047-4838", 
          "1543-1851"
        ], 
        "name": "JOM", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "68"
      }
    ], 
    "name": "Dislocation Nucleation in Nickel-Graphene Nanocomposites Under Mode I Loading", 
    "pagination": "1909-1914", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6fbb59b3b5928ce0c63cd1b917eccf628029a6c6e341bc7d53dd0f79ba81c122"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11837-016-1941-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023452101"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11837-016-1941-y", 
      "https://app.dimensions.ai/details/publication/pub.1023452101"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000522.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11837-016-1941-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11837-016-1941-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11837-016-1941-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11837-016-1941-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11837-016-1941-y'


 

This table displays all metadata directly associated to this object as RDF triples.

144 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11837-016-1941-y schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Ne850c1d964a24455805b827a72980b9b
4 schema:citation sg:pub.10.1038/ncomms3114
5 sg:pub.10.1038/nmat1849
6 sg:pub.10.1038/nnano.2008.215
7 sg:pub.10.1038/nnano.2010.132
8 https://doi.org/10.1006/jcph.1995.1039
9 https://doi.org/10.1016/j.compscitech.2012.05.005
10 https://doi.org/10.1016/j.susc.2003.08.050
11 https://doi.org/10.1021/jp060936f
12 https://doi.org/10.1021/nl080649i
13 https://doi.org/10.1063/1.3245303
14 https://doi.org/10.1063/1.481208
15 https://doi.org/10.1080/09500839.2012.759293
16 https://doi.org/10.1088/0022-3727/45/44/445302
17 https://doi.org/10.1088/0953-8984/24/24/245301
18 https://doi.org/10.1088/0965-0393/18/1/015012
19 https://doi.org/10.1088/0965-0393/20/7/075004
20 https://doi.org/10.1103/physrevb.77.035405
21 https://doi.org/10.1103/physrevlett.50.1285
22 https://doi.org/10.1103/physrevlett.74.4694
23 https://doi.org/10.1126/science.1102896
24 https://doi.org/10.1126/science.1158877
25 https://doi.org/10.1126/science.1171245
26 schema:datePublished 2016-07
27 schema:datePublishedReg 2016-07-01
28 schema:description Graphene has superior mechanical properties, and previous studies have shown that it can be used as a fiber laminate in metal-graphene nanocomposites. Our research outlines the advantages and disadvantages of different Ni-graphene nanocomposite laminates. Using molecular dynamics, Ni-graphene nanocomposites are studied under mode I loading normal to the graphene laminate plane. The stress intensity factor (KI) is predicted for the nanocomposite at varying distances between a simulated crack and the graphene sheet(s) in the Ni-matrix. We find that KI of the Ni-matrix is reduced with the addition of graphene sheet. However, for a single graphene sheet in the Ni-matrix, KI increases with increased spacing between the crack and the graphene sheet. This is due to the change in the crack-generated stress field in the region between the Ni-matrix containing the crack and the graphene sheet, which leads to the lower stress values at which dislocation nucleation occurs compared to single-crystal Ni. For multiple layers of graphene sheets in the Ni-matrix, we find that failure occurs exclusively by delamination at a lower stress than the one-layer case. This research concludes that fabricated Ni-graphene nanocomposites can be tuned for optimal fracture strength by the structural arrangement of graphene sheets within the Ni-matrix.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N147ad413f7494e36b554adf26dcf58a1
33 N3f0d487eb1734bd1855b0c1454199f57
34 sg:journal.1042541
35 schema:name Dislocation Nucleation in Nickel-Graphene Nanocomposites Under Mode I Loading
36 schema:pagination 1909-1914
37 schema:productId N862bcb6584f546cdb30f5ee8da995a29
38 N9d04a72289ec4b6f8a81d97e2251b950
39 Nded33520d721440d857bcc3e83b98dbf
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023452101
41 https://doi.org/10.1007/s11837-016-1941-y
42 schema:sdDatePublished 2019-04-11T02:07
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N9bf7815e05da431992f70e45f05eae0c
45 schema:url http://link.springer.com/10.1007%2Fs11837-016-1941-y
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N147ad413f7494e36b554adf26dcf58a1 schema:volumeNumber 68
50 rdf:type schema:PublicationVolume
51 N3f0d487eb1734bd1855b0c1454199f57 schema:issueNumber 7
52 rdf:type schema:PublicationIssue
53 N862bcb6584f546cdb30f5ee8da995a29 schema:name readcube_id
54 schema:value 6fbb59b3b5928ce0c63cd1b917eccf628029a6c6e341bc7d53dd0f79ba81c122
55 rdf:type schema:PropertyValue
56 N9bf7815e05da431992f70e45f05eae0c schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N9d04a72289ec4b6f8a81d97e2251b950 schema:name doi
59 schema:value 10.1007/s11837-016-1941-y
60 rdf:type schema:PropertyValue
61 Nd75c5a061a0e421f89ae6e8196af4e33 rdf:first sg:person.01070071306.95
62 rdf:rest rdf:nil
63 Nded33520d721440d857bcc3e83b98dbf schema:name dimensions_id
64 schema:value pub.1023452101
65 rdf:type schema:PropertyValue
66 Ne850c1d964a24455805b827a72980b9b rdf:first sg:person.013240647116.51
67 rdf:rest Nd75c5a061a0e421f89ae6e8196af4e33
68 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
69 schema:name Engineering
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
72 schema:name Materials Engineering
73 rdf:type schema:DefinedTerm
74 sg:grant.2997991 http://pending.schema.org/fundedItem sg:pub.10.1007/s11837-016-1941-y
75 rdf:type schema:MonetaryGrant
76 sg:grant.3110264 http://pending.schema.org/fundedItem sg:pub.10.1007/s11837-016-1941-y
77 rdf:type schema:MonetaryGrant
78 sg:grant.3110932 http://pending.schema.org/fundedItem sg:pub.10.1007/s11837-016-1941-y
79 rdf:type schema:MonetaryGrant
80 sg:journal.1042541 schema:issn 1047-4838
81 1543-1851
82 schema:name JOM
83 rdf:type schema:Periodical
84 sg:person.01070071306.95 schema:affiliation https://www.grid.ac/institutes/grid.411017.2
85 schema:familyName Nair
86 schema:givenName Arun K.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070071306.95
88 rdf:type schema:Person
89 sg:person.013240647116.51 schema:affiliation https://www.grid.ac/institutes/grid.411017.2
90 schema:familyName Muller
91 schema:givenName Scott E.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013240647116.51
93 rdf:type schema:Person
94 sg:pub.10.1038/ncomms3114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019317957
95 https://doi.org/10.1038/ncomms3114
96 rdf:type schema:CreativeWork
97 sg:pub.10.1038/nmat1849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052791836
98 https://doi.org/10.1038/nmat1849
99 rdf:type schema:CreativeWork
100 sg:pub.10.1038/nnano.2008.215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032209533
101 https://doi.org/10.1038/nnano.2008.215
102 rdf:type schema:CreativeWork
103 sg:pub.10.1038/nnano.2010.132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022328266
104 https://doi.org/10.1038/nnano.2010.132
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1006/jcph.1995.1039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034822855
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.compscitech.2012.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029252816
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.susc.2003.08.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035310379
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1021/jp060936f schema:sameAs https://app.dimensions.ai/details/publication/pub.1033316831
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1021/nl080649i schema:sameAs https://app.dimensions.ai/details/publication/pub.1027087154
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1063/1.3245303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057923868
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1063/1.481208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058078170
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1080/09500839.2012.759293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048206670
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1088/0022-3727/45/44/445302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019694815
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1088/0953-8984/24/24/245301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044337063
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1088/0965-0393/18/1/015012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011538065
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1088/0965-0393/20/7/075004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041566060
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physrevb.77.035405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060623588
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physrevlett.50.1285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060788409
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physrevlett.74.4694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060811207
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1126/science.1102896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019008412
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1126/science.1158877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010593797
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1126/science.1171245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006821145
141 rdf:type schema:CreativeWork
142 https://www.grid.ac/institutes/grid.411017.2 schema:alternateName University of Arkansas at Fayetteville
143 schema:name Multiscale Materials Modeling Lab, Department of Mechanical Engineering, University of Arkansas, 72701, Fayetteville, AR, USA
144 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...