On the Mechanism of Ultrasound-Driven Deagglomeration of Nanoparticle Agglomerates in Aluminum Melt View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-02-26

AUTHORS

Olga Kudryashova, Sergey Vorozhtsov

ABSTRACT

One of the promising directions in the technology of composite alloys with improved mechanical properties is reinforcement of the metallic matrix with nanopowders introduced in the liquid metal. Ultrasonic processing is known to significantly improve the introduction of submicrone particles to the metallic melt. This study focuses on the mechanisms of deagglomeration and wettability of such particles by the melt under the action of ultrasound. The suggested mechanism involves the penetration of the liquid metal into the pores and cracks of the agglomerates under the excess pressure created by imploding cavitation bubbles and further destruction of the agglomerate by the sound wave. The main dependences connecting the acoustic parameters and processing time with the physical and chemical properties of particles and the melt are obtained through analytical modeling. The mathematical description of the ultrasonic deagglomeration in liquid metal is presented; a dependence of the threshold intensity of ultrasound for the break-up of agglomerates on their size is reported. More... »

PAGES

1307-1311

References to SciGraph publications

Journal

TITLE

JOM

ISSUE

5

VOLUME

68

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11837-016-1851-z

DOI

http://dx.doi.org/10.1007/s11837-016-1851-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001086409


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tomsk State University, Tomsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "IPSET Siberian Branch, Russian Academy of Sciences, Biysk, Russia", 
            "Tomsk State University, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kudryashova", 
        "givenName": "Olga", 
        "id": "sg:person.011002610413.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011002610413.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk State University, Tomsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "Tomsk State University, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vorozhtsov", 
        "givenName": "Sergey", 
        "id": "sg:person.010552241521.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010552241521.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4757-5408-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012759320", 
          "https://doi.org/10.1007/978-1-4757-5408-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-998-0342-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013089769", 
          "https://doi.org/10.1007/s11837-998-0342-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-015-2850-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022718668", 
          "https://doi.org/10.1007/s11661-015-2850-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-02-26", 
    "datePublishedReg": "2016-02-26", 
    "description": "One of the promising directions in the technology of composite alloys with improved mechanical properties is reinforcement of the metallic matrix with nanopowders introduced in the liquid metal. Ultrasonic processing is known to significantly improve the introduction of submicrone particles to the metallic melt. This study focuses on the mechanisms of deagglomeration and wettability of such particles by the melt under the action of ultrasound. The suggested mechanism involves the penetration of the liquid metal into the pores and cracks of the agglomerates under the excess pressure created by imploding cavitation bubbles and further destruction of the agglomerate by the sound wave. The main dependences connecting the acoustic parameters and processing time with the physical and chemical properties of particles and the melt are obtained through analytical modeling. The mathematical description of the ultrasonic deagglomeration in liquid metal is presented; a dependence of the threshold intensity of ultrasound for the break-up of agglomerates on their size is reported.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11837-016-1851-z", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042541", 
        "issn": [
          "1047-4838", 
          "1543-1851"
        ], 
        "name": "JOM", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "68"
      }
    ], 
    "keywords": [
      "liquid metal", 
      "improved mechanical properties", 
      "mechanism of deagglomeration", 
      "composite alloys", 
      "mechanical properties", 
      "aluminum melt", 
      "action of ultrasound", 
      "metallic matrix", 
      "ultrasonic processing", 
      "nanoparticle agglomerates", 
      "cavitation bubbles", 
      "analytical modeling", 
      "mechanism of ultrasound", 
      "deagglomeration", 
      "metallic melts", 
      "agglomerates", 
      "excess pressure", 
      "sound waves", 
      "main dependences", 
      "mathematical description", 
      "processing time", 
      "such particles", 
      "metals", 
      "melt", 
      "particles", 
      "chemical properties", 
      "cracks", 
      "alloy", 
      "wettability", 
      "nanopowders", 
      "properties", 
      "acoustic parameters", 
      "bubbles", 
      "reinforcement", 
      "pores", 
      "waves", 
      "dependence", 
      "modeling", 
      "penetration", 
      "promising direction", 
      "matrix", 
      "technology", 
      "parameters", 
      "processing", 
      "pressure", 
      "direction", 
      "mechanism", 
      "size", 
      "further destruction", 
      "suggested mechanism", 
      "threshold intensity", 
      "ultrasound", 
      "time", 
      "intensity", 
      "description", 
      "introduction", 
      "destruction", 
      "study", 
      "action"
    ], 
    "name": "On the Mechanism of Ultrasound-Driven Deagglomeration of Nanoparticle Agglomerates in Aluminum Melt", 
    "pagination": "1307-1311", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001086409"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11837-016-1851-z"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11837-016-1851-z", 
      "https://app.dimensions.ai/details/publication/pub.1001086409"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_697.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11837-016-1851-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11837-016-1851-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11837-016-1851-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11837-016-1851-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11837-016-1851-z'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      21 PREDICATES      86 URIs      75 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11837-016-1851-z schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N1a3fcfc611284f3a8341d3ede2ab8f98
4 schema:citation sg:pub.10.1007/978-1-4757-5408-7
5 sg:pub.10.1007/s11661-015-2850-3
6 sg:pub.10.1007/s11837-998-0342-2
7 schema:datePublished 2016-02-26
8 schema:datePublishedReg 2016-02-26
9 schema:description One of the promising directions in the technology of composite alloys with improved mechanical properties is reinforcement of the metallic matrix with nanopowders introduced in the liquid metal. Ultrasonic processing is known to significantly improve the introduction of submicrone particles to the metallic melt. This study focuses on the mechanisms of deagglomeration and wettability of such particles by the melt under the action of ultrasound. The suggested mechanism involves the penetration of the liquid metal into the pores and cracks of the agglomerates under the excess pressure created by imploding cavitation bubbles and further destruction of the agglomerate by the sound wave. The main dependences connecting the acoustic parameters and processing time with the physical and chemical properties of particles and the melt are obtained through analytical modeling. The mathematical description of the ultrasonic deagglomeration in liquid metal is presented; a dependence of the threshold intensity of ultrasound for the break-up of agglomerates on their size is reported.
10 schema:genre article
11 schema:isAccessibleForFree false
12 schema:isPartOf N7d2385dffa4b4927b01e7129a8ddbd9e
13 Nf97e231bbdbf44e4ace07196a92527dd
14 sg:journal.1042541
15 schema:keywords acoustic parameters
16 action
17 action of ultrasound
18 agglomerates
19 alloy
20 aluminum melt
21 analytical modeling
22 bubbles
23 cavitation bubbles
24 chemical properties
25 composite alloys
26 cracks
27 deagglomeration
28 dependence
29 description
30 destruction
31 direction
32 excess pressure
33 further destruction
34 improved mechanical properties
35 intensity
36 introduction
37 liquid metal
38 main dependences
39 mathematical description
40 matrix
41 mechanical properties
42 mechanism
43 mechanism of deagglomeration
44 mechanism of ultrasound
45 melt
46 metallic matrix
47 metallic melts
48 metals
49 modeling
50 nanoparticle agglomerates
51 nanopowders
52 parameters
53 particles
54 penetration
55 pores
56 pressure
57 processing
58 processing time
59 promising direction
60 properties
61 reinforcement
62 size
63 sound waves
64 study
65 such particles
66 suggested mechanism
67 technology
68 threshold intensity
69 time
70 ultrasonic processing
71 ultrasound
72 waves
73 wettability
74 schema:name On the Mechanism of Ultrasound-Driven Deagglomeration of Nanoparticle Agglomerates in Aluminum Melt
75 schema:pagination 1307-1311
76 schema:productId N1256cdca4f80449883d71acfaca97bcd
77 Na0cf120b495048d7a83fbd17e4b9524a
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001086409
79 https://doi.org/10.1007/s11837-016-1851-z
80 schema:sdDatePublished 2022-12-01T06:34
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher Nf859a0c37af4479ea5f470cafc5d1e78
83 schema:url https://doi.org/10.1007/s11837-016-1851-z
84 sgo:license sg:explorer/license/
85 sgo:sdDataset articles
86 rdf:type schema:ScholarlyArticle
87 N1256cdca4f80449883d71acfaca97bcd schema:name dimensions_id
88 schema:value pub.1001086409
89 rdf:type schema:PropertyValue
90 N1a3fcfc611284f3a8341d3ede2ab8f98 rdf:first sg:person.011002610413.39
91 rdf:rest N28e5b477f86d43dcb02d850f352c0000
92 N28e5b477f86d43dcb02d850f352c0000 rdf:first sg:person.010552241521.39
93 rdf:rest rdf:nil
94 N7d2385dffa4b4927b01e7129a8ddbd9e schema:volumeNumber 68
95 rdf:type schema:PublicationVolume
96 Na0cf120b495048d7a83fbd17e4b9524a schema:name doi
97 schema:value 10.1007/s11837-016-1851-z
98 rdf:type schema:PropertyValue
99 Nf859a0c37af4479ea5f470cafc5d1e78 schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 Nf97e231bbdbf44e4ace07196a92527dd schema:issueNumber 5
102 rdf:type schema:PublicationIssue
103 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
104 schema:name Engineering
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
107 schema:name Materials Engineering
108 rdf:type schema:DefinedTerm
109 sg:journal.1042541 schema:issn 1047-4838
110 1543-1851
111 schema:name JOM
112 schema:publisher Springer Nature
113 rdf:type schema:Periodical
114 sg:person.010552241521.39 schema:affiliation grid-institutes:grid.77602.34
115 schema:familyName Vorozhtsov
116 schema:givenName Sergey
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010552241521.39
118 rdf:type schema:Person
119 sg:person.011002610413.39 schema:affiliation grid-institutes:grid.77602.34
120 schema:familyName Kudryashova
121 schema:givenName Olga
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011002610413.39
123 rdf:type schema:Person
124 sg:pub.10.1007/978-1-4757-5408-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012759320
125 https://doi.org/10.1007/978-1-4757-5408-7
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s11661-015-2850-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022718668
128 https://doi.org/10.1007/s11661-015-2850-3
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s11837-998-0342-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013089769
131 https://doi.org/10.1007/s11837-998-0342-2
132 rdf:type schema:CreativeWork
133 grid-institutes:grid.77602.34 schema:alternateName Tomsk State University, Tomsk, Russia
134 schema:name IPSET Siberian Branch, Russian Academy of Sciences, Biysk, Russia
135 Tomsk State University, Tomsk, Russia
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...