Ancient Metal Mirror Alloy Revisited: Quasicrystalline Nanoparticles Observed View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-07-14

AUTHORS

J. A. Sekhar, A. S. Mantri, S. Yamjala, Sabyasachi Saha, R. Balamuralikrishnan, P. Rama Rao

ABSTRACT

This article presents, for the first time, evidence of nanocrystalline structure, through direct transmission electron microscopy (TEM) observations, in a Cu-32 wt.% Sn alloy that has been made by an age-old, uniquely crafted casting process. This alloy has been used as a metal mirror for centuries. The TEM images also reveal five-sided projections of nano-particles. The convergent beam nano-diffraction patterns obtained from the nano-particles point to the nano-phase being quasicrystalline, a feature that has never before been reported for a copper alloy, although there have been reports of the presence of icosahedral ‘clusters’ within large unit cell intermetallic phases. This observation has been substantiated by x-ray diffraction, wherein the observed peaks could be indexed to an icosahedral quasi-crystalline phase. The mirror alloy casting has been valued for its high hardness and high reflectance properties, both of which result from its unique internal microstructure that include nano-grains as well as quasi-crystallinity. We further postulate that this microstructure is a consequence of the raw materials used and the manufacturing process, including the choice of mold material. While the alloy consists primarily of copper and tin, impurity elements such as zinc, iron, sulfur, aluminum and nickel are also present, in individual amounts not exceeding one wt.%. It is believed that these trace impurities could have influenced the microstructure and, consequently, the properties of the metal mirror alloy. More... »

PAGES

2976-2983

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11837-015-1524-3

DOI

http://dx.doi.org/10.1007/s11837-015-1524-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053260597


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "MHI Inc., 45215, Cincinnati, OH, USA", 
          "id": "http://www.grid.ac/institutes/grid.436653.1", 
          "name": [
            "Institute of Thermodynamics and Design, 45215, Cincinnati, OH, USA", 
            "University of Cincinnati, 45221, Cincinnati, OH, USA", 
            "MHI Inc., 45215, Cincinnati, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sekhar", 
        "givenName": "J. A.", 
        "id": "sg:person.016661564161.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016661564161.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cincinnati, 45221, Cincinnati, OH, USA", 
          "id": "http://www.grid.ac/institutes/grid.24827.3b", 
          "name": [
            "University of Cincinnati, 45221, Cincinnati, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mantri", 
        "givenName": "A. S.", 
        "id": "sg:person.013764304672.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013764304672.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Defence Metallurgical Research Laboratory, 500058, Hyderabad, India", 
          "id": "http://www.grid.ac/institutes/grid.461581.f", 
          "name": [
            "Defence Metallurgical Research Laboratory, 500058, Hyderabad, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamjala", 
        "givenName": "S.", 
        "id": "sg:person.01141560070.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141560070.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Defence Metallurgical Research Laboratory, 500058, Hyderabad, India", 
          "id": "http://www.grid.ac/institutes/grid.461581.f", 
          "name": [
            "Defence Metallurgical Research Laboratory, 500058, Hyderabad, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saha", 
        "givenName": "Sabyasachi", 
        "id": "sg:person.011044516072.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011044516072.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Defence Metallurgical Research Laboratory, 500058, Hyderabad, India", 
          "id": "http://www.grid.ac/institutes/grid.461581.f", 
          "name": [
            "Defence Metallurgical Research Laboratory, 500058, Hyderabad, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Balamuralikrishnan", 
        "givenName": "R.", 
        "id": "sg:person.014201063521.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014201063521.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), 500005, Hyderabad, India", 
          "id": "http://www.grid.ac/institutes/grid.466869.3", 
          "name": [
            "International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), 500005, Hyderabad, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rao", 
        "givenName": "P. Rama", 
        "id": "sg:person.014003350415.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014003350415.64"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00339-006-3535-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011237379", 
          "https://doi.org/10.1007/s00339-006-3535-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/319104b0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043222935", 
          "https://doi.org/10.1038/319104b0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/327609a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052508862", 
          "https://doi.org/10.1038/327609a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03029299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023647357", 
          "https://doi.org/10.1007/bf03029299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02846341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045402855", 
          "https://doi.org/10.1007/bf02846341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03222791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014101423", 
          "https://doi.org/10.1007/bf03222791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/proc-462-81", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067938080", 
          "https://doi.org/10.1557/proc-462-81"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02847665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012301179", 
          "https://doi.org/10.1007/bf02847665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02645910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006122965", 
          "https://doi.org/10.1007/bf02645910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10008-003-0467-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012297808", 
          "https://doi.org/10.1007/s10008-003-0467-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03977", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032001790", 
          "https://doi.org/10.1038/nature03977"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-07-14", 
    "datePublishedReg": "2015-07-14", 
    "description": "This article presents, for the first time, evidence of nanocrystalline structure, through direct transmission electron microscopy (TEM) observations, in a Cu-32\u00a0wt.% Sn alloy that has been made by an age-old, uniquely crafted casting process. This alloy has been used as a metal mirror for centuries. The TEM images also reveal five-sided projections of nano-particles. The convergent beam nano-diffraction patterns obtained from the nano-particles point to the nano-phase being quasicrystalline, a feature that has never before been reported for a copper alloy, although there have been reports of the presence of icosahedral \u2018clusters\u2019 within large unit cell intermetallic phases. This observation has been substantiated by x-ray diffraction, wherein the observed peaks could be indexed to an icosahedral quasi-crystalline phase. The mirror alloy casting has been valued for its high hardness and high reflectance properties, both of which result from its unique internal microstructure that include nano-grains as well as quasi-crystallinity. We further postulate that this microstructure is a consequence of the raw materials used and the manufacturing process, including the choice of mold material. While the alloy consists primarily of copper and tin, impurity elements such as zinc, iron, sulfur, aluminum and nickel are also present, in individual amounts not exceeding one wt.%. It is believed that these trace impurities could have influenced the microstructure and, consequently, the properties of the metal mirror alloy.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11837-015-1524-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042541", 
        "issn": [
          "1047-4838", 
          "1543-1851"
        ], 
        "name": "JOM", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "67"
      }
    ], 
    "keywords": [
      "icosahedral quasi-crystalline phase", 
      "high reflectance properties", 
      "direct transmission electron microscopy (TEM) observation", 
      "unique internal microstructure", 
      "quasi-crystalline phase", 
      "alloy castings", 
      "high hardness", 
      "mold material", 
      "transmission electron microscopy observations", 
      "nanocrystalline structure", 
      "copper alloys", 
      "electron microscopy observations", 
      "Sn alloy", 
      "intermetallic phases", 
      "manufacturing process", 
      "internal microstructure", 
      "alloy", 
      "microstructure", 
      "impurity elements", 
      "metal mirror", 
      "microscopy observations", 
      "raw materials", 
      "ray diffraction", 
      "reflectance properties", 
      "trace impurities", 
      "TEM images", 
      "materials", 
      "casting", 
      "wt", 
      "hardness", 
      "properties", 
      "nano-diffraction patterns", 
      "aluminum", 
      "quasicrystalline", 
      "tin", 
      "nickel", 
      "phase", 
      "process", 
      "diffraction", 
      "nanoparticles", 
      "impurities", 
      "copper", 
      "first time", 
      "mirror", 
      "iron", 
      "structure", 
      "observed peaks", 
      "sulfur", 
      "observations", 
      "elements", 
      "amount", 
      "images", 
      "peak", 
      "individual amount", 
      "point", 
      "time", 
      "zinc", 
      "features", 
      "presence", 
      "choice", 
      "patterns", 
      "article", 
      "projections", 
      "consequences", 
      "clusters", 
      "report", 
      "century", 
      "evidence", 
      "Cu-32", 
      "five-sided projections", 
      "convergent beam nano-diffraction patterns", 
      "beam nano-diffraction patterns", 
      "nano-particles point", 
      "large unit cell intermetallic phases", 
      "unit cell intermetallic phases", 
      "cell intermetallic phases", 
      "mirror alloy casting", 
      "metal mirror alloy", 
      "mirror alloy", 
      "Ancient Metal Mirror Alloy", 
      "Quasicrystalline Nanoparticles"
    ], 
    "name": "Ancient Metal Mirror Alloy Revisited: Quasicrystalline Nanoparticles Observed", 
    "pagination": "2976-2983", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053260597"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11837-015-1524-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11837-015-1524-3", 
      "https://app.dimensions.ai/details/publication/pub.1053260597"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_672.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11837-015-1524-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11837-015-1524-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11837-015-1524-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11837-015-1524-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11837-015-1524-3'


 

This table displays all metadata directly associated to this object as RDF triples.

229 TRIPLES      22 PREDICATES      116 URIs      97 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11837-015-1524-3 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nd445fa1a4f2945f5ad6620a3baecb4d2
4 schema:citation sg:pub.10.1007/bf02645910
5 sg:pub.10.1007/bf02846341
6 sg:pub.10.1007/bf02847665
7 sg:pub.10.1007/bf03029299
8 sg:pub.10.1007/bf03222791
9 sg:pub.10.1007/s00339-006-3535-y
10 sg:pub.10.1007/s10008-003-0467-8
11 sg:pub.10.1038/319104b0
12 sg:pub.10.1038/327609a0
13 sg:pub.10.1038/nature03977
14 sg:pub.10.1557/proc-462-81
15 schema:datePublished 2015-07-14
16 schema:datePublishedReg 2015-07-14
17 schema:description This article presents, for the first time, evidence of nanocrystalline structure, through direct transmission electron microscopy (TEM) observations, in a Cu-32 wt.% Sn alloy that has been made by an age-old, uniquely crafted casting process. This alloy has been used as a metal mirror for centuries. The TEM images also reveal five-sided projections of nano-particles. The convergent beam nano-diffraction patterns obtained from the nano-particles point to the nano-phase being quasicrystalline, a feature that has never before been reported for a copper alloy, although there have been reports of the presence of icosahedral ‘clusters’ within large unit cell intermetallic phases. This observation has been substantiated by x-ray diffraction, wherein the observed peaks could be indexed to an icosahedral quasi-crystalline phase. The mirror alloy casting has been valued for its high hardness and high reflectance properties, both of which result from its unique internal microstructure that include nano-grains as well as quasi-crystallinity. We further postulate that this microstructure is a consequence of the raw materials used and the manufacturing process, including the choice of mold material. While the alloy consists primarily of copper and tin, impurity elements such as zinc, iron, sulfur, aluminum and nickel are also present, in individual amounts not exceeding one wt.%. It is believed that these trace impurities could have influenced the microstructure and, consequently, the properties of the metal mirror alloy.
18 schema:genre article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N4c05b10d0dfe42e989c85368de3b9efb
22 Nd4dc1cb3a9dc446eaaa9d405434e06eb
23 sg:journal.1042541
24 schema:keywords Ancient Metal Mirror Alloy
25 Cu-32
26 Quasicrystalline Nanoparticles
27 Sn alloy
28 TEM images
29 alloy
30 alloy castings
31 aluminum
32 amount
33 article
34 beam nano-diffraction patterns
35 casting
36 cell intermetallic phases
37 century
38 choice
39 clusters
40 consequences
41 convergent beam nano-diffraction patterns
42 copper
43 copper alloys
44 diffraction
45 direct transmission electron microscopy (TEM) observation
46 electron microscopy observations
47 elements
48 evidence
49 features
50 first time
51 five-sided projections
52 hardness
53 high hardness
54 high reflectance properties
55 icosahedral quasi-crystalline phase
56 images
57 impurities
58 impurity elements
59 individual amount
60 intermetallic phases
61 internal microstructure
62 iron
63 large unit cell intermetallic phases
64 manufacturing process
65 materials
66 metal mirror
67 metal mirror alloy
68 microscopy observations
69 microstructure
70 mirror
71 mirror alloy
72 mirror alloy casting
73 mold material
74 nano-diffraction patterns
75 nano-particles point
76 nanocrystalline structure
77 nanoparticles
78 nickel
79 observations
80 observed peaks
81 patterns
82 peak
83 phase
84 point
85 presence
86 process
87 projections
88 properties
89 quasi-crystalline phase
90 quasicrystalline
91 raw materials
92 ray diffraction
93 reflectance properties
94 report
95 structure
96 sulfur
97 time
98 tin
99 trace impurities
100 transmission electron microscopy observations
101 unique internal microstructure
102 unit cell intermetallic phases
103 wt
104 zinc
105 schema:name Ancient Metal Mirror Alloy Revisited: Quasicrystalline Nanoparticles Observed
106 schema:pagination 2976-2983
107 schema:productId N5d0fecacc3e342a3994eaba26bb777ab
108 N844b7949f9764d3480c226071c21b2d6
109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053260597
110 https://doi.org/10.1007/s11837-015-1524-3
111 schema:sdDatePublished 2022-01-01T18:37
112 schema:sdLicense https://scigraph.springernature.com/explorer/license/
113 schema:sdPublisher N8e026d96f25f47818bff5d9c3817ffdb
114 schema:url https://doi.org/10.1007/s11837-015-1524-3
115 sgo:license sg:explorer/license/
116 sgo:sdDataset articles
117 rdf:type schema:ScholarlyArticle
118 N4c05b10d0dfe42e989c85368de3b9efb schema:issueNumber 12
119 rdf:type schema:PublicationIssue
120 N5d0fecacc3e342a3994eaba26bb777ab schema:name dimensions_id
121 schema:value pub.1053260597
122 rdf:type schema:PropertyValue
123 N6f2dc476dc4a4b28b1becb1af4cbec15 rdf:first sg:person.011044516072.28
124 rdf:rest Nbda8c15ed52842e3a85c76a63f146011
125 N74cb1452cb9645e688cfc891ad3a8be1 rdf:first sg:person.014003350415.64
126 rdf:rest rdf:nil
127 N844b7949f9764d3480c226071c21b2d6 schema:name doi
128 schema:value 10.1007/s11837-015-1524-3
129 rdf:type schema:PropertyValue
130 N8e026d96f25f47818bff5d9c3817ffdb schema:name Springer Nature - SN SciGraph project
131 rdf:type schema:Organization
132 N9c1eb5d5e23b46e8bd292db1c258cf5f rdf:first sg:person.013764304672.69
133 rdf:rest Nc916f0c1a96f461b9a27678c3bb2c6b8
134 Nbda8c15ed52842e3a85c76a63f146011 rdf:first sg:person.014201063521.24
135 rdf:rest N74cb1452cb9645e688cfc891ad3a8be1
136 Nc916f0c1a96f461b9a27678c3bb2c6b8 rdf:first sg:person.01141560070.07
137 rdf:rest N6f2dc476dc4a4b28b1becb1af4cbec15
138 Nd445fa1a4f2945f5ad6620a3baecb4d2 rdf:first sg:person.016661564161.49
139 rdf:rest N9c1eb5d5e23b46e8bd292db1c258cf5f
140 Nd4dc1cb3a9dc446eaaa9d405434e06eb schema:volumeNumber 67
141 rdf:type schema:PublicationVolume
142 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
143 schema:name Engineering
144 rdf:type schema:DefinedTerm
145 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
146 schema:name Materials Engineering
147 rdf:type schema:DefinedTerm
148 sg:journal.1042541 schema:issn 1047-4838
149 1543-1851
150 schema:name JOM
151 schema:publisher Springer Nature
152 rdf:type schema:Periodical
153 sg:person.011044516072.28 schema:affiliation grid-institutes:grid.461581.f
154 schema:familyName Saha
155 schema:givenName Sabyasachi
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011044516072.28
157 rdf:type schema:Person
158 sg:person.01141560070.07 schema:affiliation grid-institutes:grid.461581.f
159 schema:familyName Yamjala
160 schema:givenName S.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141560070.07
162 rdf:type schema:Person
163 sg:person.013764304672.69 schema:affiliation grid-institutes:grid.24827.3b
164 schema:familyName Mantri
165 schema:givenName A. S.
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013764304672.69
167 rdf:type schema:Person
168 sg:person.014003350415.64 schema:affiliation grid-institutes:grid.466869.3
169 schema:familyName Rao
170 schema:givenName P. Rama
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014003350415.64
172 rdf:type schema:Person
173 sg:person.014201063521.24 schema:affiliation grid-institutes:grid.461581.f
174 schema:familyName Balamuralikrishnan
175 schema:givenName R.
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014201063521.24
177 rdf:type schema:Person
178 sg:person.016661564161.49 schema:affiliation grid-institutes:grid.436653.1
179 schema:familyName Sekhar
180 schema:givenName J. A.
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016661564161.49
182 rdf:type schema:Person
183 sg:pub.10.1007/bf02645910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006122965
184 https://doi.org/10.1007/bf02645910
185 rdf:type schema:CreativeWork
186 sg:pub.10.1007/bf02846341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045402855
187 https://doi.org/10.1007/bf02846341
188 rdf:type schema:CreativeWork
189 sg:pub.10.1007/bf02847665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012301179
190 https://doi.org/10.1007/bf02847665
191 rdf:type schema:CreativeWork
192 sg:pub.10.1007/bf03029299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023647357
193 https://doi.org/10.1007/bf03029299
194 rdf:type schema:CreativeWork
195 sg:pub.10.1007/bf03222791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014101423
196 https://doi.org/10.1007/bf03222791
197 rdf:type schema:CreativeWork
198 sg:pub.10.1007/s00339-006-3535-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1011237379
199 https://doi.org/10.1007/s00339-006-3535-y
200 rdf:type schema:CreativeWork
201 sg:pub.10.1007/s10008-003-0467-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012297808
202 https://doi.org/10.1007/s10008-003-0467-8
203 rdf:type schema:CreativeWork
204 sg:pub.10.1038/319104b0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043222935
205 https://doi.org/10.1038/319104b0
206 rdf:type schema:CreativeWork
207 sg:pub.10.1038/327609a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052508862
208 https://doi.org/10.1038/327609a0
209 rdf:type schema:CreativeWork
210 sg:pub.10.1038/nature03977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032001790
211 https://doi.org/10.1038/nature03977
212 rdf:type schema:CreativeWork
213 sg:pub.10.1557/proc-462-81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067938080
214 https://doi.org/10.1557/proc-462-81
215 rdf:type schema:CreativeWork
216 grid-institutes:grid.24827.3b schema:alternateName University of Cincinnati, 45221, Cincinnati, OH, USA
217 schema:name University of Cincinnati, 45221, Cincinnati, OH, USA
218 rdf:type schema:Organization
219 grid-institutes:grid.436653.1 schema:alternateName MHI Inc., 45215, Cincinnati, OH, USA
220 schema:name Institute of Thermodynamics and Design, 45215, Cincinnati, OH, USA
221 MHI Inc., 45215, Cincinnati, OH, USA
222 University of Cincinnati, 45221, Cincinnati, OH, USA
223 rdf:type schema:Organization
224 grid-institutes:grid.461581.f schema:alternateName Defence Metallurgical Research Laboratory, 500058, Hyderabad, India
225 schema:name Defence Metallurgical Research Laboratory, 500058, Hyderabad, India
226 rdf:type schema:Organization
227 grid-institutes:grid.466869.3 schema:alternateName International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), 500005, Hyderabad, India
228 schema:name International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), 500005, Hyderabad, India
229 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...