Ancient Metal Mirror Alloy Revisited: Quasicrystalline Nanoparticles Observed View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-07-14

AUTHORS

J. A. Sekhar, A. S. Mantri, S. Yamjala, Sabyasachi Saha, R. Balamuralikrishnan, P. Rama Rao

ABSTRACT

This article presents, for the first time, evidence of nanocrystalline structure, through direct transmission electron microscopy (TEM) observations, in a Cu-32 wt.% Sn alloy that has been made by an age-old, uniquely crafted casting process. This alloy has been used as a metal mirror for centuries. The TEM images also reveal five-sided projections of nano-particles. The convergent beam nano-diffraction patterns obtained from the nano-particles point to the nano-phase being quasicrystalline, a feature that has never before been reported for a copper alloy, although there have been reports of the presence of icosahedral ‘clusters’ within large unit cell intermetallic phases. This observation has been substantiated by x-ray diffraction, wherein the observed peaks could be indexed to an icosahedral quasi-crystalline phase. The mirror alloy casting has been valued for its high hardness and high reflectance properties, both of which result from its unique internal microstructure that include nano-grains as well as quasi-crystallinity. We further postulate that this microstructure is a consequence of the raw materials used and the manufacturing process, including the choice of mold material. While the alloy consists primarily of copper and tin, impurity elements such as zinc, iron, sulfur, aluminum and nickel are also present, in individual amounts not exceeding one wt.%. It is believed that these trace impurities could have influenced the microstructure and, consequently, the properties of the metal mirror alloy. More... »

PAGES

2976-2983

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11837-015-1524-3

DOI

http://dx.doi.org/10.1007/s11837-015-1524-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053260597


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "MHI Inc., 45215, Cincinnati, OH, USA", 
          "id": "http://www.grid.ac/institutes/grid.436653.1", 
          "name": [
            "Institute of Thermodynamics and Design, 45215, Cincinnati, OH, USA", 
            "University of Cincinnati, 45221, Cincinnati, OH, USA", 
            "MHI Inc., 45215, Cincinnati, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sekhar", 
        "givenName": "J. A.", 
        "id": "sg:person.016661564161.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016661564161.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cincinnati, 45221, Cincinnati, OH, USA", 
          "id": "http://www.grid.ac/institutes/grid.24827.3b", 
          "name": [
            "University of Cincinnati, 45221, Cincinnati, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mantri", 
        "givenName": "A. S.", 
        "id": "sg:person.013764304672.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013764304672.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Defence Metallurgical Research Laboratory, 500058, Hyderabad, India", 
          "id": "http://www.grid.ac/institutes/grid.461581.f", 
          "name": [
            "Defence Metallurgical Research Laboratory, 500058, Hyderabad, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamjala", 
        "givenName": "S.", 
        "id": "sg:person.01141560070.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141560070.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Defence Metallurgical Research Laboratory, 500058, Hyderabad, India", 
          "id": "http://www.grid.ac/institutes/grid.461581.f", 
          "name": [
            "Defence Metallurgical Research Laboratory, 500058, Hyderabad, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saha", 
        "givenName": "Sabyasachi", 
        "id": "sg:person.011044516072.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011044516072.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Defence Metallurgical Research Laboratory, 500058, Hyderabad, India", 
          "id": "http://www.grid.ac/institutes/grid.461581.f", 
          "name": [
            "Defence Metallurgical Research Laboratory, 500058, Hyderabad, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Balamuralikrishnan", 
        "givenName": "R.", 
        "id": "sg:person.014201063521.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014201063521.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), 500005, Hyderabad, India", 
          "id": "http://www.grid.ac/institutes/grid.466869.3", 
          "name": [
            "International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), 500005, Hyderabad, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rao", 
        "givenName": "P. Rama", 
        "id": "sg:person.014003350415.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014003350415.64"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/319104b0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043222935", 
          "https://doi.org/10.1038/319104b0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02847665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012301179", 
          "https://doi.org/10.1007/bf02847665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/327609a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052508862", 
          "https://doi.org/10.1038/327609a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02645910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006122965", 
          "https://doi.org/10.1007/bf02645910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10008-003-0467-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012297808", 
          "https://doi.org/10.1007/s10008-003-0467-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03029299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023647357", 
          "https://doi.org/10.1007/bf03029299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03977", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032001790", 
          "https://doi.org/10.1038/nature03977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03222791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014101423", 
          "https://doi.org/10.1007/bf03222791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/proc-462-81", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067938080", 
          "https://doi.org/10.1557/proc-462-81"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00339-006-3535-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011237379", 
          "https://doi.org/10.1007/s00339-006-3535-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02846341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045402855", 
          "https://doi.org/10.1007/bf02846341"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-07-14", 
    "datePublishedReg": "2015-07-14", 
    "description": "This article presents, for the first time, evidence of nanocrystalline structure, through direct transmission electron microscopy (TEM) observations, in a Cu-32\u00a0wt.% Sn alloy that has been made by an age-old, uniquely crafted casting process. This alloy has been used as a metal mirror for centuries. The TEM images also reveal five-sided projections of nano-particles. The convergent beam nano-diffraction patterns obtained from the nano-particles point to the nano-phase being quasicrystalline, a feature that has never before been reported for a copper alloy, although there have been reports of the presence of icosahedral \u2018clusters\u2019 within large unit cell intermetallic phases. This observation has been substantiated by x-ray diffraction, wherein the observed peaks could be indexed to an icosahedral quasi-crystalline phase. The mirror alloy casting has been valued for its high hardness and high reflectance properties, both of which result from its unique internal microstructure that include nano-grains as well as quasi-crystallinity. We further postulate that this microstructure is a consequence of the raw materials used and the manufacturing process, including the choice of mold material. While the alloy consists primarily of copper and tin, impurity elements such as zinc, iron, sulfur, aluminum and nickel are also present, in individual amounts not exceeding one wt.%. It is believed that these trace impurities could have influenced the microstructure and, consequently, the properties of the metal mirror alloy.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11837-015-1524-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042541", 
        "issn": [
          "1047-4838", 
          "1543-1851"
        ], 
        "name": "JOM", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "67"
      }
    ], 
    "keywords": [
      "icosahedral quasi-crystalline phase", 
      "high reflectance properties", 
      "unique internal microstructure", 
      "transmission electron microscopy observations", 
      "mold material", 
      "alloy castings", 
      "high hardness", 
      "nanocrystalline structure", 
      "electron microscopy observations", 
      "copper alloys", 
      "Sn alloy", 
      "intermetallic phases", 
      "manufacturing process", 
      "quasi-crystalline phase", 
      "internal microstructure", 
      "alloy", 
      "impurity elements", 
      "X-ray diffraction", 
      "direct transmission electron microscopy observations", 
      "microstructure", 
      "metal mirror", 
      "raw materials", 
      "microscopy observations", 
      "trace impurities", 
      "TEM images", 
      "reflectance properties", 
      "wt", 
      "materials", 
      "casting", 
      "hardness", 
      "nano-diffraction patterns", 
      "properties", 
      "aluminum", 
      "tin", 
      "quasicrystalline", 
      "phase", 
      "nickel", 
      "diffraction", 
      "impurities", 
      "nanoparticles", 
      "process", 
      "copper", 
      "CU 32", 
      "first time", 
      "observed peaks", 
      "mirror", 
      "iron", 
      "structure", 
      "sulfur", 
      "peak", 
      "elements", 
      "observations", 
      "amount", 
      "images", 
      "point", 
      "zinc", 
      "time", 
      "individual amount", 
      "features", 
      "presence", 
      "choice", 
      "projections", 
      "patterns", 
      "article", 
      "consequences", 
      "clusters", 
      "report", 
      "century", 
      "evidence"
    ], 
    "name": "Ancient Metal Mirror Alloy Revisited: Quasicrystalline Nanoparticles Observed", 
    "pagination": "2976-2983", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053260597"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11837-015-1524-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11837-015-1524-3", 
      "https://app.dimensions.ai/details/publication/pub.1053260597"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_656.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11837-015-1524-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11837-015-1524-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11837-015-1524-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11837-015-1524-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11837-015-1524-3'


 

This table displays all metadata directly associated to this object as RDF triples.

217 TRIPLES      22 PREDICATES      104 URIs      85 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11837-015-1524-3 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N4d5c509bc21d4edebf5798a66f3aeb9c
4 schema:citation sg:pub.10.1007/bf02645910
5 sg:pub.10.1007/bf02846341
6 sg:pub.10.1007/bf02847665
7 sg:pub.10.1007/bf03029299
8 sg:pub.10.1007/bf03222791
9 sg:pub.10.1007/s00339-006-3535-y
10 sg:pub.10.1007/s10008-003-0467-8
11 sg:pub.10.1038/319104b0
12 sg:pub.10.1038/327609a0
13 sg:pub.10.1038/nature03977
14 sg:pub.10.1557/proc-462-81
15 schema:datePublished 2015-07-14
16 schema:datePublishedReg 2015-07-14
17 schema:description This article presents, for the first time, evidence of nanocrystalline structure, through direct transmission electron microscopy (TEM) observations, in a Cu-32 wt.% Sn alloy that has been made by an age-old, uniquely crafted casting process. This alloy has been used as a metal mirror for centuries. The TEM images also reveal five-sided projections of nano-particles. The convergent beam nano-diffraction patterns obtained from the nano-particles point to the nano-phase being quasicrystalline, a feature that has never before been reported for a copper alloy, although there have been reports of the presence of icosahedral ‘clusters’ within large unit cell intermetallic phases. This observation has been substantiated by x-ray diffraction, wherein the observed peaks could be indexed to an icosahedral quasi-crystalline phase. The mirror alloy casting has been valued for its high hardness and high reflectance properties, both of which result from its unique internal microstructure that include nano-grains as well as quasi-crystallinity. We further postulate that this microstructure is a consequence of the raw materials used and the manufacturing process, including the choice of mold material. While the alloy consists primarily of copper and tin, impurity elements such as zinc, iron, sulfur, aluminum and nickel are also present, in individual amounts not exceeding one wt.%. It is believed that these trace impurities could have influenced the microstructure and, consequently, the properties of the metal mirror alloy.
18 schema:genre article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N4c254ef49a5349d1bf8dcd1478704b76
22 Nbd10dc74cb6944e39be8f5d056964cd5
23 sg:journal.1042541
24 schema:keywords CU 32
25 Sn alloy
26 TEM images
27 X-ray diffraction
28 alloy
29 alloy castings
30 aluminum
31 amount
32 article
33 casting
34 century
35 choice
36 clusters
37 consequences
38 copper
39 copper alloys
40 diffraction
41 direct transmission electron microscopy observations
42 electron microscopy observations
43 elements
44 evidence
45 features
46 first time
47 hardness
48 high hardness
49 high reflectance properties
50 icosahedral quasi-crystalline phase
51 images
52 impurities
53 impurity elements
54 individual amount
55 intermetallic phases
56 internal microstructure
57 iron
58 manufacturing process
59 materials
60 metal mirror
61 microscopy observations
62 microstructure
63 mirror
64 mold material
65 nano-diffraction patterns
66 nanocrystalline structure
67 nanoparticles
68 nickel
69 observations
70 observed peaks
71 patterns
72 peak
73 phase
74 point
75 presence
76 process
77 projections
78 properties
79 quasi-crystalline phase
80 quasicrystalline
81 raw materials
82 reflectance properties
83 report
84 structure
85 sulfur
86 time
87 tin
88 trace impurities
89 transmission electron microscopy observations
90 unique internal microstructure
91 wt
92 zinc
93 schema:name Ancient Metal Mirror Alloy Revisited: Quasicrystalline Nanoparticles Observed
94 schema:pagination 2976-2983
95 schema:productId N2b6e2be8fe1943d3a2f83c5e625ec8de
96 Nc543f18f669847098e95f4d01060b108
97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053260597
98 https://doi.org/10.1007/s11837-015-1524-3
99 schema:sdDatePublished 2022-05-20T07:30
100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
101 schema:sdPublisher N5d47972423d542c3bea62b00c95274fd
102 schema:url https://doi.org/10.1007/s11837-015-1524-3
103 sgo:license sg:explorer/license/
104 sgo:sdDataset articles
105 rdf:type schema:ScholarlyArticle
106 N0646089edcd741b79d5da0e88e0dfde0 rdf:first sg:person.011044516072.28
107 rdf:rest N17464b5c53a14c7a83218ec9d9832f83
108 N17464b5c53a14c7a83218ec9d9832f83 rdf:first sg:person.014201063521.24
109 rdf:rest N87a2e9db843f430cad83532632e29fbb
110 N2b6e2be8fe1943d3a2f83c5e625ec8de schema:name doi
111 schema:value 10.1007/s11837-015-1524-3
112 rdf:type schema:PropertyValue
113 N4c254ef49a5349d1bf8dcd1478704b76 schema:issueNumber 12
114 rdf:type schema:PublicationIssue
115 N4d5c509bc21d4edebf5798a66f3aeb9c rdf:first sg:person.016661564161.49
116 rdf:rest N7690942fd21f4c76a5bee4303a10ebdd
117 N5d47972423d542c3bea62b00c95274fd schema:name Springer Nature - SN SciGraph project
118 rdf:type schema:Organization
119 N7690942fd21f4c76a5bee4303a10ebdd rdf:first sg:person.013764304672.69
120 rdf:rest N87dc1c9c4319476faa00604a0cf01782
121 N87a2e9db843f430cad83532632e29fbb rdf:first sg:person.014003350415.64
122 rdf:rest rdf:nil
123 N87dc1c9c4319476faa00604a0cf01782 rdf:first sg:person.01141560070.07
124 rdf:rest N0646089edcd741b79d5da0e88e0dfde0
125 Nbd10dc74cb6944e39be8f5d056964cd5 schema:volumeNumber 67
126 rdf:type schema:PublicationVolume
127 Nc543f18f669847098e95f4d01060b108 schema:name dimensions_id
128 schema:value pub.1053260597
129 rdf:type schema:PropertyValue
130 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
131 schema:name Engineering
132 rdf:type schema:DefinedTerm
133 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
134 schema:name Materials Engineering
135 rdf:type schema:DefinedTerm
136 sg:journal.1042541 schema:issn 1047-4838
137 1543-1851
138 schema:name JOM
139 schema:publisher Springer Nature
140 rdf:type schema:Periodical
141 sg:person.011044516072.28 schema:affiliation grid-institutes:grid.461581.f
142 schema:familyName Saha
143 schema:givenName Sabyasachi
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011044516072.28
145 rdf:type schema:Person
146 sg:person.01141560070.07 schema:affiliation grid-institutes:grid.461581.f
147 schema:familyName Yamjala
148 schema:givenName S.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141560070.07
150 rdf:type schema:Person
151 sg:person.013764304672.69 schema:affiliation grid-institutes:grid.24827.3b
152 schema:familyName Mantri
153 schema:givenName A. S.
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013764304672.69
155 rdf:type schema:Person
156 sg:person.014003350415.64 schema:affiliation grid-institutes:grid.466869.3
157 schema:familyName Rao
158 schema:givenName P. Rama
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014003350415.64
160 rdf:type schema:Person
161 sg:person.014201063521.24 schema:affiliation grid-institutes:grid.461581.f
162 schema:familyName Balamuralikrishnan
163 schema:givenName R.
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014201063521.24
165 rdf:type schema:Person
166 sg:person.016661564161.49 schema:affiliation grid-institutes:grid.436653.1
167 schema:familyName Sekhar
168 schema:givenName J. A.
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016661564161.49
170 rdf:type schema:Person
171 sg:pub.10.1007/bf02645910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006122965
172 https://doi.org/10.1007/bf02645910
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/bf02846341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045402855
175 https://doi.org/10.1007/bf02846341
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/bf02847665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012301179
178 https://doi.org/10.1007/bf02847665
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/bf03029299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023647357
181 https://doi.org/10.1007/bf03029299
182 rdf:type schema:CreativeWork
183 sg:pub.10.1007/bf03222791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014101423
184 https://doi.org/10.1007/bf03222791
185 rdf:type schema:CreativeWork
186 sg:pub.10.1007/s00339-006-3535-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1011237379
187 https://doi.org/10.1007/s00339-006-3535-y
188 rdf:type schema:CreativeWork
189 sg:pub.10.1007/s10008-003-0467-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012297808
190 https://doi.org/10.1007/s10008-003-0467-8
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/319104b0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043222935
193 https://doi.org/10.1038/319104b0
194 rdf:type schema:CreativeWork
195 sg:pub.10.1038/327609a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052508862
196 https://doi.org/10.1038/327609a0
197 rdf:type schema:CreativeWork
198 sg:pub.10.1038/nature03977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032001790
199 https://doi.org/10.1038/nature03977
200 rdf:type schema:CreativeWork
201 sg:pub.10.1557/proc-462-81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067938080
202 https://doi.org/10.1557/proc-462-81
203 rdf:type schema:CreativeWork
204 grid-institutes:grid.24827.3b schema:alternateName University of Cincinnati, 45221, Cincinnati, OH, USA
205 schema:name University of Cincinnati, 45221, Cincinnati, OH, USA
206 rdf:type schema:Organization
207 grid-institutes:grid.436653.1 schema:alternateName MHI Inc., 45215, Cincinnati, OH, USA
208 schema:name Institute of Thermodynamics and Design, 45215, Cincinnati, OH, USA
209 MHI Inc., 45215, Cincinnati, OH, USA
210 University of Cincinnati, 45221, Cincinnati, OH, USA
211 rdf:type schema:Organization
212 grid-institutes:grid.461581.f schema:alternateName Defence Metallurgical Research Laboratory, 500058, Hyderabad, India
213 schema:name Defence Metallurgical Research Laboratory, 500058, Hyderabad, India
214 rdf:type schema:Organization
215 grid-institutes:grid.466869.3 schema:alternateName International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), 500005, Hyderabad, India
216 schema:name International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), 500005, Hyderabad, India
217 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...