Phase Coarsening in Thin Films View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-02-27

AUTHORS

K. G. Wang, M. E. Glicksman

ABSTRACT

Phase coarsening (Ostwald ripening) phenomena are ubiquitous in materials growth processes such as thin film formation. The classical theory explaining late-stage phase coarsening phenomena was developed by Lifshitz and Slyozov, and by Wagner in the 1960s. Their theory is valid only for a vanishing volume fraction of the second phase in three dimensions. However, phase coarsening in two-dimensional systems is qualitatively different from that in three dimensions. In this paper, the many-body concept of screening length is reviewed, from which we derive the growth law for a ‘screened’ phase island, and develop diffusion screening theory for phase coarsening in thin films. The coarsening rate constant, maximum size of phase islands in films, and their size distribution function will be derived from diffusion screening theory. A critical comparison will be provided of prior coarsening concepts and improvements derived from screening approaches. More... »

PAGES

1905-1912

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11837-015-1338-3

DOI

http://dx.doi.org/10.1007/s11837-015-1338-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052036900


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Mechanical and Aerospace Engineering Department, Florida Institute of Technology, 32901, Melbourne, FL, USA", 
          "id": "http://www.grid.ac/institutes/grid.255966.b", 
          "name": [
            "Mechanical and Aerospace Engineering Department, Florida Institute of Technology, 32901, Melbourne, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "K. G.", 
        "id": "sg:person.013030502433.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013030502433.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mechanical and Aerospace Engineering Department, Florida Institute of Technology, 32901, Melbourne, FL, USA", 
          "id": "http://www.grid.ac/institutes/grid.255966.b", 
          "name": [
            "Mechanical and Aerospace Engineering Department, Florida Institute of Technology, 32901, Melbourne, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glicksman", 
        "givenName": "M. E.", 
        "id": "sg:person.010720014261.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010720014261.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1015408116016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026129998", 
          "https://doi.org/10.1023/a:1015408116016"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-02-27", 
    "datePublishedReg": "2015-02-27", 
    "description": "Phase coarsening (Ostwald ripening) phenomena are ubiquitous in materials growth processes such as thin film formation. The classical theory explaining late-stage phase coarsening phenomena was developed by Lifshitz and Slyozov, and by Wagner in the 1960s. Their theory is valid only for a vanishing volume fraction of the second phase in three dimensions. However, phase coarsening in two-dimensional systems is qualitatively different from that in three dimensions. In this paper, the many-body concept of screening length is reviewed, from which we derive the growth law for a \u2018screened\u2019 phase island, and develop diffusion screening theory for phase coarsening in thin films. The coarsening rate constant, maximum size of phase islands in films, and their size distribution function will be derived from diffusion screening theory. A critical comparison will be provided of prior coarsening concepts and improvements derived from screening approaches.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11837-015-1338-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042541", 
        "issn": [
          "1047-4838", 
          "1543-1851"
        ], 
        "name": "JOM", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "67"
      }
    ], 
    "keywords": [
      "screening theory", 
      "two-dimensional systems", 
      "coarsening phenomena", 
      "material growth process", 
      "thin films", 
      "size distribution function", 
      "classical theory", 
      "distribution function", 
      "thin film formation", 
      "theory", 
      "growth law", 
      "critical comparison", 
      "Lifshitz", 
      "maximum size", 
      "growth process", 
      "phase islands", 
      "dimensions", 
      "Slyozov", 
      "films", 
      "volume fraction", 
      "phenomenon", 
      "law", 
      "phase coarsening", 
      "film formation", 
      "coarsening", 
      "concept", 
      "approach", 
      "function", 
      "system", 
      "phase", 
      "Wagner", 
      "body concept", 
      "second phase", 
      "comparison", 
      "size", 
      "length", 
      "coarsening rate", 
      "process", 
      "improvement", 
      "fraction", 
      "formation", 
      "rate", 
      "islands", 
      "paper"
    ], 
    "name": "Phase Coarsening in Thin Films", 
    "pagination": "1905-1912", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052036900"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11837-015-1338-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11837-015-1338-3", 
      "https://app.dimensions.ai/details/publication/pub.1052036900"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_653.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11837-015-1338-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11837-015-1338-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11837-015-1338-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11837-015-1338-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11837-015-1338-3'


 

This table displays all metadata directly associated to this object as RDF triples.

113 TRIPLES      22 PREDICATES      70 URIs      61 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11837-015-1338-3 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N992f88fa95df40cc97098ab0131c901e
4 schema:citation sg:pub.10.1023/a:1015408116016
5 schema:datePublished 2015-02-27
6 schema:datePublishedReg 2015-02-27
7 schema:description Phase coarsening (Ostwald ripening) phenomena are ubiquitous in materials growth processes such as thin film formation. The classical theory explaining late-stage phase coarsening phenomena was developed by Lifshitz and Slyozov, and by Wagner in the 1960s. Their theory is valid only for a vanishing volume fraction of the second phase in three dimensions. However, phase coarsening in two-dimensional systems is qualitatively different from that in three dimensions. In this paper, the many-body concept of screening length is reviewed, from which we derive the growth law for a ‘screened’ phase island, and develop diffusion screening theory for phase coarsening in thin films. The coarsening rate constant, maximum size of phase islands in films, and their size distribution function will be derived from diffusion screening theory. A critical comparison will be provided of prior coarsening concepts and improvements derived from screening approaches.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N3b5bae1616924271ba735cecb17e7130
12 Ncd5683239c384fe991a39bf320434355
13 sg:journal.1042541
14 schema:keywords Lifshitz
15 Slyozov
16 Wagner
17 approach
18 body concept
19 classical theory
20 coarsening
21 coarsening phenomena
22 coarsening rate
23 comparison
24 concept
25 critical comparison
26 dimensions
27 distribution function
28 film formation
29 films
30 formation
31 fraction
32 function
33 growth law
34 growth process
35 improvement
36 islands
37 law
38 length
39 material growth process
40 maximum size
41 paper
42 phase
43 phase coarsening
44 phase islands
45 phenomenon
46 process
47 rate
48 screening theory
49 second phase
50 size
51 size distribution function
52 system
53 theory
54 thin film formation
55 thin films
56 two-dimensional systems
57 volume fraction
58 schema:name Phase Coarsening in Thin Films
59 schema:pagination 1905-1912
60 schema:productId N0ed4dc66dbfa47a1adf56bf908c91ff9
61 Nc0f9c61cc16f4555845d5f6453d718e1
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052036900
63 https://doi.org/10.1007/s11837-015-1338-3
64 schema:sdDatePublished 2022-06-01T22:13
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher Nb06c26929f724af88aa5841d1eab0b4f
67 schema:url https://doi.org/10.1007/s11837-015-1338-3
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N0ed4dc66dbfa47a1adf56bf908c91ff9 schema:name dimensions_id
72 schema:value pub.1052036900
73 rdf:type schema:PropertyValue
74 N3b5bae1616924271ba735cecb17e7130 schema:issueNumber 8
75 rdf:type schema:PublicationIssue
76 N992f88fa95df40cc97098ab0131c901e rdf:first sg:person.013030502433.94
77 rdf:rest Ne67074204cae4380b8111b69cc03ab30
78 Nb06c26929f724af88aa5841d1eab0b4f schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 Nc0f9c61cc16f4555845d5f6453d718e1 schema:name doi
81 schema:value 10.1007/s11837-015-1338-3
82 rdf:type schema:PropertyValue
83 Ncd5683239c384fe991a39bf320434355 schema:volumeNumber 67
84 rdf:type schema:PublicationVolume
85 Ne67074204cae4380b8111b69cc03ab30 rdf:first sg:person.010720014261.43
86 rdf:rest rdf:nil
87 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
88 schema:name Engineering
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
91 schema:name Materials Engineering
92 rdf:type schema:DefinedTerm
93 sg:journal.1042541 schema:issn 1047-4838
94 1543-1851
95 schema:name JOM
96 schema:publisher Springer Nature
97 rdf:type schema:Periodical
98 sg:person.010720014261.43 schema:affiliation grid-institutes:grid.255966.b
99 schema:familyName Glicksman
100 schema:givenName M. E.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010720014261.43
102 rdf:type schema:Person
103 sg:person.013030502433.94 schema:affiliation grid-institutes:grid.255966.b
104 schema:familyName Wang
105 schema:givenName K. G.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013030502433.94
107 rdf:type schema:Person
108 sg:pub.10.1023/a:1015408116016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026129998
109 https://doi.org/10.1023/a:1015408116016
110 rdf:type schema:CreativeWork
111 grid-institutes:grid.255966.b schema:alternateName Mechanical and Aerospace Engineering Department, Florida Institute of Technology, 32901, Melbourne, FL, USA
112 schema:name Mechanical and Aerospace Engineering Department, Florida Institute of Technology, 32901, Melbourne, FL, USA
113 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...