Thermodynamic Aspects of Homogeneous Nucleation Enhanced by Icosahedral Short Range Order in Liquid Fcc-Type Alloys View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-02-26

AUTHORS

Michel Rappaz, Güven Kurtuldu

ABSTRACT

We have recently shown that minute solute element additions to liquid metallic alloys can strongly influence the nucleation of the fcc phase and act as a grain refinement method. Electron back-scattered diffraction observations revealed a concomitant increase in the percentage of nearest neighbor (nn) grains that are in a twin relationship. Furthermore, multiple-twinned (MT) nn grain configurations with a fivefold symmetry around a common ⟨110⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle 110\rangle $$\end{document} direction have been identified, an occurrence that can be explained when the symmetry of the icosahedron is accounted for. It was then conjectured that a new nucleation mechanism occurs in two steps: first, the formation of small icosahedral quasicrystals in the melt, followed by heteroepitaxy of the fcc phase on facets of these quasicrystals. In the present contribution, based on thermodynamics arguments, it is proposed that the first step occurs by spinodal decomposition of the liquid, in a manner similar to Guinier–Preston zones formation in solid state precipitation, while the second step is a transformation of these quasicrystal precursors into MT-fcc nanocrystals once the driving force for this transformation is sufficient to overcome the fcc-liquid interfacial energy and the elastic strains associated with MT-fcc nanoparticles. This explanation sets up guidelines for finding solute elements and composition ranges that favor this grain refinement mechanism. More... »

PAGES

1812-1820

References to SciGraph publications

  • 1998-11. 〈110〉 dendrite growth in aluminum feathery grains in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1989-08. Icosahedral and decagonal quasicrystals, crystalline phases, and multiple twins in rapidly solidified Al13Cr4Si4 in JOURNAL OF MATERIALS SCIENCE
  • 1987-04-01. The Cu−Ir (Copper-Iridium) system in JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION
  • 1981-06. Grain size of gold and gold alloys in GOLD BULLETIN
  • 2000-12. Observation of five-fold local symmetry in liquid lead in NATURE
  • 1984-06. Grain-refined recrystallized 14-carat gold alloy in GOLD BULLETIN
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11837-015-1328-5

    DOI

    http://dx.doi.org/10.1007/s11837-015-1328-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1026645410


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Computational Materials Laboratory, Institute of Materials, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, Station 12, 1015, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Computational Materials Laboratory, Institute of Materials, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, Station 12, 1015, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rappaz", 
            "givenName": "Michel", 
            "id": "sg:person.013657516157.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Computational Materials Laboratory, Institute of Materials, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, Station 12, 1015, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Computational Materials Laboratory, Institute of Materials, Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, Station 12, 1015, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kurtuldu", 
            "givenName": "G\u00fcven", 
            "id": "sg:person.015265234160.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015265234160.02"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf03214701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029001340", 
              "https://doi.org/10.1007/bf03214701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-998-0321-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015245284", 
              "https://doi.org/10.1007/s11661-998-0321-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02385657", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033335052", 
              "https://doi.org/10.1007/bf02385657"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02873198", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035560730", 
              "https://doi.org/10.1007/bf02873198"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35048537", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012700890", 
              "https://doi.org/10.1038/35048537"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf03214600", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037706191", 
              "https://doi.org/10.1007/bf03214600"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-02-26", 
        "datePublishedReg": "2015-02-26", 
        "description": "We have recently shown that minute solute element additions to liquid metallic alloys can strongly influence the nucleation of the fcc phase and act as a grain refinement method. Electron back-scattered diffraction observations revealed a concomitant increase in the percentage of nearest neighbor (nn) grains that are in a twin relationship. Furthermore, multiple-twinned (MT) nn grain configurations with a fivefold symmetry around a common \u27e8110\u27e9\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\langle 110\\rangle $$\\end{document} direction have been identified, an occurrence that can be explained when the symmetry of the icosahedron is accounted for. It was then conjectured that a new nucleation mechanism occurs in two steps: first, the formation of small icosahedral quasicrystals in the melt, followed by heteroepitaxy of the fcc phase on facets of these quasicrystals. In the present contribution, based on thermodynamics arguments, it is proposed that the first step occurs by spinodal decomposition of the liquid, in a manner similar to Guinier\u2013Preston zones formation in solid state precipitation, while the second step is a transformation of these quasicrystal precursors into MT-fcc nanocrystals once the driving force for this transformation is sufficient to overcome the fcc-liquid interfacial energy and the elastic strains associated with MT-fcc nanoparticles. This explanation sets up guidelines for finding solute elements and composition ranges that favor this grain refinement mechanism.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11837-015-1328-5", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1042541", 
            "issn": [
              "1047-4838", 
              "1543-1851"
            ], 
            "name": "JOM", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "67"
          }
        ], 
        "keywords": [
          "fcc phase", 
          "grain refinement mechanism", 
          "grain refinement method", 
          "liquid metallic alloys", 
          "solid-state precipitation", 
          "metallic alloys", 
          "element addition", 
          "solute elements", 
          "refinement mechanism", 
          "elastic strain", 
          "interfacial energy", 
          "neighbor grains", 
          "new nucleation mechanism", 
          "diffraction observations", 
          "spinodal decomposition", 
          "alloy", 
          "Guinier-Preston zone formation", 
          "nucleation mechanism", 
          "zone formation", 
          "homogeneous nucleation", 
          "nucleation", 
          "icosahedral short-range order", 
          "thermodynamic aspects", 
          "refinement method", 
          "grains", 
          "twin relationship", 
          "present contribution", 
          "nearest-neighbor grains", 
          "second step", 
          "heteroepitaxy", 
          "icosahedral quasicrystals", 
          "short-range order", 
          "thermodynamic arguments", 
          "phase", 
          "nanocrystals", 
          "liquid", 
          "range order", 
          "nanoparticles", 
          "force", 
          "melt", 
          "first step", 
          "energy", 
          "step", 
          "fivefold symmetry", 
          "quasicrystals", 
          "decomposition", 
          "formation", 
          "precipitation", 
          "direction", 
          "transformation", 
          "method", 
          "order", 
          "elements", 
          "composition", 
          "mechanism", 
          "precursors", 
          "electrons", 
          "strains", 
          "increase", 
          "addition", 
          "observations", 
          "facets", 
          "symmetry", 
          "contribution", 
          "icosahedron", 
          "aspects", 
          "manner", 
          "percentage", 
          "occurrence", 
          "guidelines", 
          "relationship", 
          "explanation", 
          "acts", 
          "concomitant increase", 
          "argument"
        ], 
        "name": "Thermodynamic Aspects of Homogeneous Nucleation Enhanced by Icosahedral Short Range Order in Liquid Fcc-Type Alloys", 
        "pagination": "1812-1820", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1026645410"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11837-015-1328-5"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11837-015-1328-5", 
          "https://app.dimensions.ai/details/publication/pub.1026645410"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:33", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_679.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11837-015-1328-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11837-015-1328-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11837-015-1328-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11837-015-1328-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11837-015-1328-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    163 TRIPLES      21 PREDICATES      105 URIs      91 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11837-015-1328-5 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N049ced0c4a714f169f1ecc98ac9b363a
    4 schema:citation sg:pub.10.1007/bf02385657
    5 sg:pub.10.1007/bf02873198
    6 sg:pub.10.1007/bf03214600
    7 sg:pub.10.1007/bf03214701
    8 sg:pub.10.1007/s11661-998-0321-9
    9 sg:pub.10.1038/35048537
    10 schema:datePublished 2015-02-26
    11 schema:datePublishedReg 2015-02-26
    12 schema:description We have recently shown that minute solute element additions to liquid metallic alloys can strongly influence the nucleation of the fcc phase and act as a grain refinement method. Electron back-scattered diffraction observations revealed a concomitant increase in the percentage of nearest neighbor (nn) grains that are in a twin relationship. Furthermore, multiple-twinned (MT) nn grain configurations with a fivefold symmetry around a common ⟨110⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle 110\rangle $$\end{document} direction have been identified, an occurrence that can be explained when the symmetry of the icosahedron is accounted for. It was then conjectured that a new nucleation mechanism occurs in two steps: first, the formation of small icosahedral quasicrystals in the melt, followed by heteroepitaxy of the fcc phase on facets of these quasicrystals. In the present contribution, based on thermodynamics arguments, it is proposed that the first step occurs by spinodal decomposition of the liquid, in a manner similar to Guinier–Preston zones formation in solid state precipitation, while the second step is a transformation of these quasicrystal precursors into MT-fcc nanocrystals once the driving force for this transformation is sufficient to overcome the fcc-liquid interfacial energy and the elastic strains associated with MT-fcc nanoparticles. This explanation sets up guidelines for finding solute elements and composition ranges that favor this grain refinement mechanism.
    13 schema:genre article
    14 schema:isAccessibleForFree true
    15 schema:isPartOf Nda7417573a9c4e858e1eb5d298d270ef
    16 Ndf02cf60e3954c0095fb20c9b38bf240
    17 sg:journal.1042541
    18 schema:keywords Guinier-Preston zone formation
    19 acts
    20 addition
    21 alloy
    22 argument
    23 aspects
    24 composition
    25 concomitant increase
    26 contribution
    27 decomposition
    28 diffraction observations
    29 direction
    30 elastic strain
    31 electrons
    32 element addition
    33 elements
    34 energy
    35 explanation
    36 facets
    37 fcc phase
    38 first step
    39 fivefold symmetry
    40 force
    41 formation
    42 grain refinement mechanism
    43 grain refinement method
    44 grains
    45 guidelines
    46 heteroepitaxy
    47 homogeneous nucleation
    48 icosahedral quasicrystals
    49 icosahedral short-range order
    50 icosahedron
    51 increase
    52 interfacial energy
    53 liquid
    54 liquid metallic alloys
    55 manner
    56 mechanism
    57 melt
    58 metallic alloys
    59 method
    60 nanocrystals
    61 nanoparticles
    62 nearest-neighbor grains
    63 neighbor grains
    64 new nucleation mechanism
    65 nucleation
    66 nucleation mechanism
    67 observations
    68 occurrence
    69 order
    70 percentage
    71 phase
    72 precipitation
    73 precursors
    74 present contribution
    75 quasicrystals
    76 range order
    77 refinement mechanism
    78 refinement method
    79 relationship
    80 second step
    81 short-range order
    82 solid-state precipitation
    83 solute elements
    84 spinodal decomposition
    85 step
    86 strains
    87 symmetry
    88 thermodynamic arguments
    89 thermodynamic aspects
    90 transformation
    91 twin relationship
    92 zone formation
    93 schema:name Thermodynamic Aspects of Homogeneous Nucleation Enhanced by Icosahedral Short Range Order in Liquid Fcc-Type Alloys
    94 schema:pagination 1812-1820
    95 schema:productId N3c8aff91ba6f4723972159969d70dc08
    96 N89dcdfdae76b4564a1d9dc959c7fe4a2
    97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026645410
    98 https://doi.org/10.1007/s11837-015-1328-5
    99 schema:sdDatePublished 2022-12-01T06:33
    100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    101 schema:sdPublisher N0bad70acf0484b6fa0c1afd9d6d9751b
    102 schema:url https://doi.org/10.1007/s11837-015-1328-5
    103 sgo:license sg:explorer/license/
    104 sgo:sdDataset articles
    105 rdf:type schema:ScholarlyArticle
    106 N049ced0c4a714f169f1ecc98ac9b363a rdf:first sg:person.013657516157.10
    107 rdf:rest N0cef88c4c82240b0902dfed798981359
    108 N0bad70acf0484b6fa0c1afd9d6d9751b schema:name Springer Nature - SN SciGraph project
    109 rdf:type schema:Organization
    110 N0cef88c4c82240b0902dfed798981359 rdf:first sg:person.015265234160.02
    111 rdf:rest rdf:nil
    112 N3c8aff91ba6f4723972159969d70dc08 schema:name doi
    113 schema:value 10.1007/s11837-015-1328-5
    114 rdf:type schema:PropertyValue
    115 N89dcdfdae76b4564a1d9dc959c7fe4a2 schema:name dimensions_id
    116 schema:value pub.1026645410
    117 rdf:type schema:PropertyValue
    118 Nda7417573a9c4e858e1eb5d298d270ef schema:volumeNumber 67
    119 rdf:type schema:PublicationVolume
    120 Ndf02cf60e3954c0095fb20c9b38bf240 schema:issueNumber 8
    121 rdf:type schema:PublicationIssue
    122 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    123 schema:name Engineering
    124 rdf:type schema:DefinedTerm
    125 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    126 schema:name Materials Engineering
    127 rdf:type schema:DefinedTerm
    128 sg:journal.1042541 schema:issn 1047-4838
    129 1543-1851
    130 schema:name JOM
    131 schema:publisher Springer Nature
    132 rdf:type schema:Periodical
    133 sg:person.013657516157.10 schema:affiliation grid-institutes:grid.5333.6
    134 schema:familyName Rappaz
    135 schema:givenName Michel
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10
    137 rdf:type schema:Person
    138 sg:person.015265234160.02 schema:affiliation grid-institutes:grid.5333.6
    139 schema:familyName Kurtuldu
    140 schema:givenName Güven
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015265234160.02
    142 rdf:type schema:Person
    143 sg:pub.10.1007/bf02385657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033335052
    144 https://doi.org/10.1007/bf02385657
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/bf02873198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035560730
    147 https://doi.org/10.1007/bf02873198
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/bf03214600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037706191
    150 https://doi.org/10.1007/bf03214600
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/bf03214701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029001340
    153 https://doi.org/10.1007/bf03214701
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/s11661-998-0321-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015245284
    156 https://doi.org/10.1007/s11661-998-0321-9
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1038/35048537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012700890
    159 https://doi.org/10.1038/35048537
    160 rdf:type schema:CreativeWork
    161 grid-institutes:grid.5333.6 schema:alternateName Computational Materials Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, Station 12, 1015, Lausanne, Switzerland
    162 schema:name Computational Materials Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, Station 12, 1015, Lausanne, Switzerland
    163 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...