Prediction of Hot Tear Formation in Vertical DC Casting of Aluminum Billets Using a Granular Approach View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-07-02

AUTHORS

M. Sistaninia, J.-M. Drezet, A. B. Phillion, M. Rappaz

ABSTRACT

A coupled hydromechanical granular model aimed at predicting hot tear formation and stress–strain behavior in metallic alloys during solidification is applied to the semicontinuous direct chill casting of aluminum alloy round billets. This granular model consists of four separate three-dimensional (3D) modules: (I) a solidification module that is used for generating the solid–liquid geometry at a given solid fraction, (II) a fluid flow module that is used to calculate the solidification shrinkage and deformation-induced pressure drop within the intergranular liquid, (III) a semisolid deformation module that is based on a combined finite element/discrete element method and simulates the rheological behavior of the granular structure, and (IV) a failure module that simulates crack initiation and propagation. To investigate hot tearing, the granular model has been applied to a representative volume within the direct chill cast billet that is located at the bottom of the liquid sump, and it reveals that semisolid deformations imposed on the mushy zone open the liquid channels due to localization of the deformation at grains boundaries. At a low casting speed, only individual pores are able to form in the widest channels because liquid feeding remains efficient. However, as the casting speed increases, the flow of liquid required to compensate for solidification shrinkage also increases and as a result the pores propagate and coalesce to form a centerline crack. More... »

PAGES

1131-1137

References to SciGraph publications

  • 2010-10-19. Simulation of Semi-Solid Material Mechanical Behavior Using a Combined Discrete/Finite Element Method in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2011-08-13. A Molecular Dynamics Simulation Study of the Cavitation Pressure in Liquid Al in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2013-02-22. Role of Grain Refinement in the Hot Tearing of Cast Al-Cu Alloy in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11837-013-0662-8

    DOI

    http://dx.doi.org/10.1007/s11837-013-0662-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1015851213


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Computational Materials Laboratory, \u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-1015, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Computational Materials Laboratory, \u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-1015, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sistaninia", 
            "givenName": "M.", 
            "id": "sg:person.013564633720.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013564633720.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Computational Materials Laboratory, \u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-1015, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Computational Materials Laboratory, \u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-1015, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Drezet", 
            "givenName": "J.-M.", 
            "id": "sg:person.01212610757.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212610757.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Engineering, University of British Columbia, Okanagan, V1V 1V8, Kelowna, BC, Canada", 
              "id": "http://www.grid.ac/institutes/grid.17091.3e", 
              "name": [
                "School of Engineering, University of British Columbia, Okanagan, V1V 1V8, Kelowna, BC, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Phillion", 
            "givenName": "A. B.", 
            "id": "sg:person.01272103526.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272103526.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Computational Materials Laboratory, \u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-1015, Lausanne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5333.6", 
              "name": [
                "Computational Materials Laboratory, \u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne, CH-1015, Lausanne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rappaz", 
            "givenName": "M.", 
            "id": "sg:person.013657516157.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11663-013-9801-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026561704", 
              "https://doi.org/10.1007/s11663-013-9801-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-010-0491-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024940741", 
              "https://doi.org/10.1007/s11661-010-0491-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-011-0846-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050437673", 
              "https://doi.org/10.1007/s11661-011-0846-1"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-07-02", 
        "datePublishedReg": "2013-07-02", 
        "description": "A coupled hydromechanical granular model aimed at predicting hot tear formation and stress\u2013strain behavior in metallic alloys during solidification is applied to the semicontinuous direct chill casting of aluminum alloy round billets. This granular model consists of four separate three-dimensional (3D) modules: (I) a solidification module that is used for generating the solid\u2013liquid geometry at a given solid fraction, (II) a fluid flow module that is used to calculate the solidification shrinkage and\u00a0deformation-induced pressure drop within the intergranular liquid, (III) a semisolid deformation module that is based on a combined finite element/discrete element method and simulates the rheological behavior of the granular structure, and (IV) a failure module that simulates crack initiation and propagation. To investigate hot tearing, the granular model has been applied to a representative volume within the direct chill cast billet that is located at the bottom of the liquid sump, and it reveals that semisolid deformations imposed on the mushy zone open the liquid channels due to localization of the deformation at grains boundaries. At a low casting speed, only individual pores are able to form in the widest channels because liquid feeding remains efficient. However, as the casting speed increases, the flow of liquid required to compensate for solidification shrinkage also increases and as a result the pores propagate and coalesce to form a centerline crack.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11837-013-0662-8", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1042541", 
            "issn": [
              "1047-4838", 
              "1543-1851"
            ], 
            "name": "JOM", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "65"
          }
        ], 
        "keywords": [
          "hot tear formation", 
          "solidification shrinkage", 
          "intergranular liquid", 
          "direct-chill cast billets", 
          "low casting speeds", 
          "granular model", 
          "fluid flow module", 
          "discrete element method", 
          "stress-strain behavior", 
          "flow of liquid", 
          "semisolid deformation", 
          "casting speed", 
          "cast billets", 
          "centerline cracks", 
          "DC casting", 
          "direct chill", 
          "hot tearing", 
          "aluminum billets", 
          "three-dimensional module", 
          "liquid sump", 
          "mushy zone", 
          "round billet", 
          "pressure drop", 
          "element method", 
          "failure module", 
          "liquid channels", 
          "grain boundaries", 
          "metallic alloys", 
          "representative volume", 
          "solid fraction", 
          "flow module", 
          "billet", 
          "deformation module", 
          "rheological behavior", 
          "individual pores", 
          "speed increases", 
          "granular structure", 
          "deformation", 
          "wide channels", 
          "tear formation", 
          "liquid feeding", 
          "pores", 
          "module", 
          "shrinkage", 
          "liquid", 
          "cracks", 
          "alloy", 
          "casting", 
          "solidification", 
          "sump", 
          "speed", 
          "behavior", 
          "flow", 
          "drop", 
          "propagation", 
          "model", 
          "geometry", 
          "tearing", 
          "bottom", 
          "channels", 
          "granular approach", 
          "boundaries", 
          "formation", 
          "zone", 
          "prediction", 
          "structure", 
          "method", 
          "fraction", 
          "volume", 
          "results", 
          "increase", 
          "approach", 
          "initiation", 
          "chills", 
          "localization", 
          "feeding"
        ], 
        "name": "Prediction of Hot Tear Formation in Vertical DC Casting of Aluminum Billets Using a Granular Approach", 
        "pagination": "1131-1137", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1015851213"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11837-013-0662-8"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11837-013-0662-8", 
          "https://app.dimensions.ai/details/publication/pub.1015851213"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:57", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_602.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11837-013-0662-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11837-013-0662-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11837-013-0662-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11837-013-0662-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11837-013-0662-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    169 TRIPLES      21 PREDICATES      103 URIs      92 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11837-013-0662-8 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Ne7e71111546d4f23aca9b945d4ba61dc
    4 schema:citation sg:pub.10.1007/s11661-010-0491-0
    5 sg:pub.10.1007/s11661-011-0846-1
    6 sg:pub.10.1007/s11663-013-9801-4
    7 schema:datePublished 2013-07-02
    8 schema:datePublishedReg 2013-07-02
    9 schema:description A coupled hydromechanical granular model aimed at predicting hot tear formation and stress–strain behavior in metallic alloys during solidification is applied to the semicontinuous direct chill casting of aluminum alloy round billets. This granular model consists of four separate three-dimensional (3D) modules: (I) a solidification module that is used for generating the solid–liquid geometry at a given solid fraction, (II) a fluid flow module that is used to calculate the solidification shrinkage and deformation-induced pressure drop within the intergranular liquid, (III) a semisolid deformation module that is based on a combined finite element/discrete element method and simulates the rheological behavior of the granular structure, and (IV) a failure module that simulates crack initiation and propagation. To investigate hot tearing, the granular model has been applied to a representative volume within the direct chill cast billet that is located at the bottom of the liquid sump, and it reveals that semisolid deformations imposed on the mushy zone open the liquid channels due to localization of the deformation at grains boundaries. At a low casting speed, only individual pores are able to form in the widest channels because liquid feeding remains efficient. However, as the casting speed increases, the flow of liquid required to compensate for solidification shrinkage also increases and as a result the pores propagate and coalesce to form a centerline crack.
    10 schema:genre article
    11 schema:isAccessibleForFree true
    12 schema:isPartOf N07e6279d1d4c4915801b7bb33439f79a
    13 N9728b3f4918a4a7397fbacbb86d996ed
    14 sg:journal.1042541
    15 schema:keywords DC casting
    16 alloy
    17 aluminum billets
    18 approach
    19 behavior
    20 billet
    21 bottom
    22 boundaries
    23 cast billets
    24 casting
    25 casting speed
    26 centerline cracks
    27 channels
    28 chills
    29 cracks
    30 deformation
    31 deformation module
    32 direct chill
    33 direct-chill cast billets
    34 discrete element method
    35 drop
    36 element method
    37 failure module
    38 feeding
    39 flow
    40 flow module
    41 flow of liquid
    42 fluid flow module
    43 formation
    44 fraction
    45 geometry
    46 grain boundaries
    47 granular approach
    48 granular model
    49 granular structure
    50 hot tear formation
    51 hot tearing
    52 increase
    53 individual pores
    54 initiation
    55 intergranular liquid
    56 liquid
    57 liquid channels
    58 liquid feeding
    59 liquid sump
    60 localization
    61 low casting speeds
    62 metallic alloys
    63 method
    64 model
    65 module
    66 mushy zone
    67 pores
    68 prediction
    69 pressure drop
    70 propagation
    71 representative volume
    72 results
    73 rheological behavior
    74 round billet
    75 semisolid deformation
    76 shrinkage
    77 solid fraction
    78 solidification
    79 solidification shrinkage
    80 speed
    81 speed increases
    82 stress-strain behavior
    83 structure
    84 sump
    85 tear formation
    86 tearing
    87 three-dimensional module
    88 volume
    89 wide channels
    90 zone
    91 schema:name Prediction of Hot Tear Formation in Vertical DC Casting of Aluminum Billets Using a Granular Approach
    92 schema:pagination 1131-1137
    93 schema:productId N42191c598bfa445693e81de6b2eb523a
    94 Nf6c24303e7f04719aad5d2604ceb1771
    95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015851213
    96 https://doi.org/10.1007/s11837-013-0662-8
    97 schema:sdDatePublished 2022-11-24T20:57
    98 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    99 schema:sdPublisher Necafc664e0614728b259077756bfbeae
    100 schema:url https://doi.org/10.1007/s11837-013-0662-8
    101 sgo:license sg:explorer/license/
    102 sgo:sdDataset articles
    103 rdf:type schema:ScholarlyArticle
    104 N07e6279d1d4c4915801b7bb33439f79a schema:volumeNumber 65
    105 rdf:type schema:PublicationVolume
    106 N082870e3094041908e10768d9b88d532 rdf:first sg:person.01212610757.30
    107 rdf:rest N6d1d0af3cbe84254885a316a5afe34c9
    108 N42191c598bfa445693e81de6b2eb523a schema:name doi
    109 schema:value 10.1007/s11837-013-0662-8
    110 rdf:type schema:PropertyValue
    111 N6d1d0af3cbe84254885a316a5afe34c9 rdf:first sg:person.01272103526.75
    112 rdf:rest N6f0c7c118e464433b1d4591950e0f052
    113 N6f0c7c118e464433b1d4591950e0f052 rdf:first sg:person.013657516157.10
    114 rdf:rest rdf:nil
    115 N9728b3f4918a4a7397fbacbb86d996ed schema:issueNumber 9
    116 rdf:type schema:PublicationIssue
    117 Ne7e71111546d4f23aca9b945d4ba61dc rdf:first sg:person.013564633720.21
    118 rdf:rest N082870e3094041908e10768d9b88d532
    119 Necafc664e0614728b259077756bfbeae schema:name Springer Nature - SN SciGraph project
    120 rdf:type schema:Organization
    121 Nf6c24303e7f04719aad5d2604ceb1771 schema:name dimensions_id
    122 schema:value pub.1015851213
    123 rdf:type schema:PropertyValue
    124 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    125 schema:name Engineering
    126 rdf:type schema:DefinedTerm
    127 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    128 schema:name Materials Engineering
    129 rdf:type schema:DefinedTerm
    130 sg:journal.1042541 schema:issn 1047-4838
    131 1543-1851
    132 schema:name JOM
    133 schema:publisher Springer Nature
    134 rdf:type schema:Periodical
    135 sg:person.01212610757.30 schema:affiliation grid-institutes:grid.5333.6
    136 schema:familyName Drezet
    137 schema:givenName J.-M.
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212610757.30
    139 rdf:type schema:Person
    140 sg:person.01272103526.75 schema:affiliation grid-institutes:grid.17091.3e
    141 schema:familyName Phillion
    142 schema:givenName A. B.
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272103526.75
    144 rdf:type schema:Person
    145 sg:person.013564633720.21 schema:affiliation grid-institutes:grid.5333.6
    146 schema:familyName Sistaninia
    147 schema:givenName M.
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013564633720.21
    149 rdf:type schema:Person
    150 sg:person.013657516157.10 schema:affiliation grid-institutes:grid.5333.6
    151 schema:familyName Rappaz
    152 schema:givenName M.
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013657516157.10
    154 rdf:type schema:Person
    155 sg:pub.10.1007/s11661-010-0491-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024940741
    156 https://doi.org/10.1007/s11661-010-0491-0
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/s11661-011-0846-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050437673
    159 https://doi.org/10.1007/s11661-011-0846-1
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/s11663-013-9801-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026561704
    162 https://doi.org/10.1007/s11663-013-9801-4
    163 rdf:type schema:CreativeWork
    164 grid-institutes:grid.17091.3e schema:alternateName School of Engineering, University of British Columbia, Okanagan, V1V 1V8, Kelowna, BC, Canada
    165 schema:name School of Engineering, University of British Columbia, Okanagan, V1V 1V8, Kelowna, BC, Canada
    166 rdf:type schema:Organization
    167 grid-institutes:grid.5333.6 schema:alternateName Computational Materials Laboratory, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
    168 schema:name Computational Materials Laboratory, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
    169 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...