Simulation of a bubbling fluidized bed process for capturing CO2 from flue gas View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-02

AUTHORS

Jeong-Hoo Choi, Chang-Keun Yi, Sung-Ho Jo, Ho-Jung Ryu, Young-Cheol Park

ABSTRACT

We simulated a bubbling bed process capturing CO2 from flue gas. It applied for a laboratory scale process to investigate effects of operating parameters on capture efficiency. The adsorber temperature had a stronger effect than the regenerator temperature. The effect of regenerator temperature was minor for high adsorber temperature. The effect of regenerator temperature decreased to level off for the temperature >250 °C. The capture efficiency was rather dominated by the adsorption reaction than the regeneration reaction. The effect of gas velocity was as appreciable as that of adsorber temperature. The capture efficiency increased with the solids circulation rate since it was ruled by the molar ratio of K to CO2 for solids circulation smaller than the minimum required one (Gs, min). However, it leveled off for solids circulation rate >Gs, min. As the ratio of adsorber solids inventory to the total solids inventory (xw1) increased, the capture efficiency increased until xw1=0.705, but decreased for xw1>0.705 because the regeneration time decreased too small. It revealed that the regeneration reaction was faster than the adsorption reaction. Increase of total solids inventory is a good way to get further increase in capture efficiency. More... »

PAGES

194-200

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11814-013-0212-7

DOI

http://dx.doi.org/10.1007/s11814-013-0212-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033666154


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Konkuk University", 
          "id": "https://www.grid.ac/institutes/grid.258676.8", 
          "name": [
            "Department of Chemical Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, 143-701, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Jeong-Hoo", 
        "id": "sg:person.010224607673.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010224607673.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute of Energy Research", 
          "id": "https://www.grid.ac/institutes/grid.418979.a", 
          "name": [
            "Korea Institute of Energy Research, 71-2, Jang-dong, Yuseong-gu, 305-343, Daejeon, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yi", 
        "givenName": "Chang-Keun", 
        "id": "sg:person.01052724037.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052724037.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute of Energy Research", 
          "id": "https://www.grid.ac/institutes/grid.418979.a", 
          "name": [
            "Korea Institute of Energy Research, 71-2, Jang-dong, Yuseong-gu, 305-343, Daejeon, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jo", 
        "givenName": "Sung-Ho", 
        "id": "sg:person.013724616531.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013724616531.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute of Energy Research", 
          "id": "https://www.grid.ac/institutes/grid.418979.a", 
          "name": [
            "Korea Institute of Energy Research, 71-2, Jang-dong, Yuseong-gu, 305-343, Daejeon, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ryu", 
        "givenName": "Ho-Jung", 
        "id": "sg:person.016153074417.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016153074417.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute of Energy Research", 
          "id": "https://www.grid.ac/institutes/grid.418979.a", 
          "name": [
            "Korea Institute of Energy Research, 71-2, Jang-dong, Yuseong-gu, 305-343, Daejeon, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Young-Cheol", 
        "id": "sg:person.015137306513.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015137306513.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ces.2008.10.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004803446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1750-5836(07)00014-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026229888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11814-009-0146-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027203189", 
          "https://doi.org/10.1007/s11814-009-0146-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11814-009-0146-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027203189", 
          "https://doi.org/10.1007/s11814-009-0146-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.9713/kcer.2012.50.3.516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033215280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11814-010-0477-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035763429", 
          "https://doi.org/10.1007/s11814-010-0477-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.egypro.2009.01.151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040151534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ceat.200800569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047078570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11814-011-0054-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049965370", 
          "https://doi.org/10.1007/s11814-011-0054-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie0709638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055601461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie0709638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055601461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie901128r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055644699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie901128r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055644699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie980707i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055647466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie980707i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055647466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9372(2009)135:6(473)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057580697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1252/jcej.07we064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064514677"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-02", 
    "datePublishedReg": "2014-02-01", 
    "description": "We simulated a bubbling bed process capturing CO2 from flue gas. It applied for a laboratory scale process to investigate effects of operating parameters on capture efficiency. The adsorber temperature had a stronger effect than the regenerator temperature. The effect of regenerator temperature was minor for high adsorber temperature. The effect of regenerator temperature decreased to level off for the temperature >250 \u00b0C. The capture efficiency was rather dominated by the adsorption reaction than the regeneration reaction. The effect of gas velocity was as appreciable as that of adsorber temperature. The capture efficiency increased with the solids circulation rate since it was ruled by the molar ratio of K to CO2 for solids circulation smaller than the minimum required one (Gs, min). However, it leveled off for solids circulation rate >Gs, min. As the ratio of adsorber solids inventory to the total solids inventory (xw1) increased, the capture efficiency increased until xw1=0.705, but decreased for xw1>0.705 because the regeneration time decreased too small. It revealed that the regeneration reaction was faster than the adsorption reaction. Increase of total solids inventory is a good way to get further increase in capture efficiency.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11814-013-0212-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1046991", 
        "issn": [
          "0256-1115", 
          "1975-7220"
        ], 
        "name": "Korean Journal of Chemical Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "31"
      }
    ], 
    "name": "Simulation of a bubbling fluidized bed process for capturing CO2 from flue gas", 
    "pagination": "194-200", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a05ffd1f60124a8a4d3620a01c9739f51c9cc08461a1a2c640ef5e4fc1cd757e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11814-013-0212-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033666154"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11814-013-0212-7", 
      "https://app.dimensions.ai/details/publication/pub.1033666154"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000522.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11814-013-0212-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11814-013-0212-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11814-013-0212-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11814-013-0212-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11814-013-0212-7'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11814-013-0212-7 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 schema:author N67fc510c386c4a94b311f259645b643f
4 schema:citation sg:pub.10.1007/s11814-009-0146-2
5 sg:pub.10.1007/s11814-010-0477-z
6 sg:pub.10.1007/s11814-011-0054-0
7 https://doi.org/10.1002/ceat.200800569
8 https://doi.org/10.1016/j.ces.2008.10.044
9 https://doi.org/10.1016/j.egypro.2009.01.151
10 https://doi.org/10.1016/s1750-5836(07)00014-x
11 https://doi.org/10.1021/ie0709638
12 https://doi.org/10.1021/ie901128r
13 https://doi.org/10.1021/ie980707i
14 https://doi.org/10.1061/(asce)0733-9372(2009)135:6(473)
15 https://doi.org/10.1252/jcej.07we064
16 https://doi.org/10.9713/kcer.2012.50.3.516
17 schema:datePublished 2014-02
18 schema:datePublishedReg 2014-02-01
19 schema:description We simulated a bubbling bed process capturing CO2 from flue gas. It applied for a laboratory scale process to investigate effects of operating parameters on capture efficiency. The adsorber temperature had a stronger effect than the regenerator temperature. The effect of regenerator temperature was minor for high adsorber temperature. The effect of regenerator temperature decreased to level off for the temperature >250 °C. The capture efficiency was rather dominated by the adsorption reaction than the regeneration reaction. The effect of gas velocity was as appreciable as that of adsorber temperature. The capture efficiency increased with the solids circulation rate since it was ruled by the molar ratio of K to CO2 for solids circulation smaller than the minimum required one (Gs, min). However, it leveled off for solids circulation rate >Gs, min. As the ratio of adsorber solids inventory to the total solids inventory (xw1) increased, the capture efficiency increased until xw1=0.705, but decreased for xw1>0.705 because the regeneration time decreased too small. It revealed that the regeneration reaction was faster than the adsorption reaction. Increase of total solids inventory is a good way to get further increase in capture efficiency.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N0b58ce1501604581b0f291a0e6660864
24 N28b6cbfc80a749fcae77078ae2d96d71
25 sg:journal.1046991
26 schema:name Simulation of a bubbling fluidized bed process for capturing CO2 from flue gas
27 schema:pagination 194-200
28 schema:productId N02c34b37c2214e45bebb60115d7ddb59
29 N46f332556d8f41bcaced989df3df4925
30 N8d6d997ca9b04c0399f1acff6f53c8e7
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033666154
32 https://doi.org/10.1007/s11814-013-0212-7
33 schema:sdDatePublished 2019-04-10T19:11
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N9b15358abd074500a331cfdebf7b6f96
36 schema:url http://link.springer.com/10.1007%2Fs11814-013-0212-7
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N02c34b37c2214e45bebb60115d7ddb59 schema:name readcube_id
41 schema:value a05ffd1f60124a8a4d3620a01c9739f51c9cc08461a1a2c640ef5e4fc1cd757e
42 rdf:type schema:PropertyValue
43 N0b58ce1501604581b0f291a0e6660864 schema:volumeNumber 31
44 rdf:type schema:PublicationVolume
45 N28b6cbfc80a749fcae77078ae2d96d71 schema:issueNumber 2
46 rdf:type schema:PublicationIssue
47 N2cc0bd13eaf44d64b793ee429dc24670 rdf:first sg:person.01052724037.29
48 rdf:rest N73fd9fe347d44fdab82a9d2b79b4fea3
49 N32b0a826db4947b6a26e9d744bc36f10 rdf:first sg:person.016153074417.00
50 rdf:rest N901dd5aafae843e4b65d70ddfed92321
51 N46f332556d8f41bcaced989df3df4925 schema:name dimensions_id
52 schema:value pub.1033666154
53 rdf:type schema:PropertyValue
54 N67fc510c386c4a94b311f259645b643f rdf:first sg:person.010224607673.39
55 rdf:rest N2cc0bd13eaf44d64b793ee429dc24670
56 N73fd9fe347d44fdab82a9d2b79b4fea3 rdf:first sg:person.013724616531.80
57 rdf:rest N32b0a826db4947b6a26e9d744bc36f10
58 N8d6d997ca9b04c0399f1acff6f53c8e7 schema:name doi
59 schema:value 10.1007/s11814-013-0212-7
60 rdf:type schema:PropertyValue
61 N901dd5aafae843e4b65d70ddfed92321 rdf:first sg:person.015137306513.04
62 rdf:rest rdf:nil
63 N9b15358abd074500a331cfdebf7b6f96 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
66 schema:name Engineering
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
69 schema:name Chemical Engineering
70 rdf:type schema:DefinedTerm
71 sg:journal.1046991 schema:issn 0256-1115
72 1975-7220
73 schema:name Korean Journal of Chemical Engineering
74 rdf:type schema:Periodical
75 sg:person.010224607673.39 schema:affiliation https://www.grid.ac/institutes/grid.258676.8
76 schema:familyName Choi
77 schema:givenName Jeong-Hoo
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010224607673.39
79 rdf:type schema:Person
80 sg:person.01052724037.29 schema:affiliation https://www.grid.ac/institutes/grid.418979.a
81 schema:familyName Yi
82 schema:givenName Chang-Keun
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052724037.29
84 rdf:type schema:Person
85 sg:person.013724616531.80 schema:affiliation https://www.grid.ac/institutes/grid.418979.a
86 schema:familyName Jo
87 schema:givenName Sung-Ho
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013724616531.80
89 rdf:type schema:Person
90 sg:person.015137306513.04 schema:affiliation https://www.grid.ac/institutes/grid.418979.a
91 schema:familyName Park
92 schema:givenName Young-Cheol
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015137306513.04
94 rdf:type schema:Person
95 sg:person.016153074417.00 schema:affiliation https://www.grid.ac/institutes/grid.418979.a
96 schema:familyName Ryu
97 schema:givenName Ho-Jung
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016153074417.00
99 rdf:type schema:Person
100 sg:pub.10.1007/s11814-009-0146-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027203189
101 https://doi.org/10.1007/s11814-009-0146-2
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s11814-010-0477-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1035763429
104 https://doi.org/10.1007/s11814-010-0477-z
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s11814-011-0054-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049965370
107 https://doi.org/10.1007/s11814-011-0054-0
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1002/ceat.200800569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047078570
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.ces.2008.10.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004803446
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.egypro.2009.01.151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040151534
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/s1750-5836(07)00014-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026229888
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1021/ie0709638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055601461
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1021/ie901128r schema:sameAs https://app.dimensions.ai/details/publication/pub.1055644699
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1021/ie980707i schema:sameAs https://app.dimensions.ai/details/publication/pub.1055647466
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1061/(asce)0733-9372(2009)135:6(473) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057580697
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1252/jcej.07we064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064514677
126 rdf:type schema:CreativeWork
127 https://doi.org/10.9713/kcer.2012.50.3.516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033215280
128 rdf:type schema:CreativeWork
129 https://www.grid.ac/institutes/grid.258676.8 schema:alternateName Konkuk University
130 schema:name Department of Chemical Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, 143-701, Seoul, Korea
131 rdf:type schema:Organization
132 https://www.grid.ac/institutes/grid.418979.a schema:alternateName Korea Institute of Energy Research
133 schema:name Korea Institute of Energy Research, 71-2, Jang-dong, Yuseong-gu, 305-343, Daejeon, Korea
134 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...