Sample geometric mean versus sample median in closed form framework of seismic reliability evaluation: a case study comparison View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

M. Abyani, B. Asgarian, Mohamad Zarrin

ABSTRACT

Earthquake engineers have made a lot of efforts to derive a comprehensive set of closed form expressions for performance evaluation of frames, which are already presented in guidelines such as SAC/FEMA. These analytical expressions have been developed to estimate the annual probability of exceeding a limit state. In the process of such seismic assessments, some essential assumptions are adopted to simplify the process. One of these fundamental assumptions declares that drift demand at any seismic intensity level follows a lognormal distribution around its median. To investigate the validity of this assumption, this paper describes a case study of the types of errors that could be produced by using the sample median as the central tendency. Based on the Maximum Likelihood Estimation method as well as other statistical evidence, this paper proposes the use of the sample geometric mean instead of the sample median for the central tendency. Further, the results of seismic reliability evaluations of 4 sample frames are compared based on utilizing both the geometric mean and the sample median. In this process, both first and second order power law fits of the hazard curve are implemented to compare the effects of hazard estimation and the selection of the central tendency on the final results. It is observed in the application example that the sample geometric mean could lead to more accurate results. More... »

PAGES

187-201

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11803-019-0498-5

DOI

http://dx.doi.org/10.1007/s11803-019-0498-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111493456


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "K.N.Toosi University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.411976.c", 
          "name": [
            "Faculty of Civil Engineering, K.N.Toosi University of Technology, 15875-4416, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abyani", 
        "givenName": "M.", 
        "id": "sg:person.011705523617.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011705523617.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "K.N.Toosi University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.411976.c", 
          "name": [
            "Faculty of Civil Engineering, K.N.Toosi University of Technology, 15875-4416, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Asgarian", 
        "givenName": "B.", 
        "id": "sg:person.014450545572.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014450545572.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "K.N.Toosi University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.411976.c", 
          "name": [
            "Faculty of Civil Engineering, K.N.Toosi University of Technology, 15875-4416, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zarrin", 
        "givenName": "Mohamad", 
        "id": "sg:person.016220253417.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016220253417.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.soildyn.2016.08.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001815817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/eqe.2265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016957661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/eqe.2300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022517084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/eqe.827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031375809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/eqe.141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033574225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1193/102912eqs320m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035911820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11803-015-0037-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037183206", 
          "https://doi.org/10.1007/s11803-015-0037-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00362-011-0404-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040518411", 
          "https://doi.org/10.1007/s00362-011-0404-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11803-015-0027-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042259713", 
          "https://doi.org/10.1007/s11803-015-0027-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/eqe.2610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043399050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11803-016-0309-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048643847", 
          "https://doi.org/10.1007/s11803-016-0309-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/eqe.2522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049725361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.strusafe.2013.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052512764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9399(2000)126:12(1224)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057583673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9445(1994)120:11(3320)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057598227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9445(2002)128:4(526)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057600175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)st.1943-541x.0000215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057641863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1954.10501232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058299173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1260/1369-4332.18.3.325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064582427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1260/1369-4332.18.3.325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064582427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1268522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069420824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11803-017-0379-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074200772", 
          "https://doi.org/10.1007/s11803-017-0379-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11803-017-0379-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074200772", 
          "https://doi.org/10.1007/s11803-017-0379-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11803-017-0388-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084739760", 
          "https://doi.org/10.1007/s11803-017-0388-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11803-017-0388-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084739760", 
          "https://doi.org/10.1007/s11803-017-0388-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11803-018-0454-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105453927", 
          "https://doi.org/10.1007/s11803-018-0454-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11803-018-0481-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107602260", 
          "https://doi.org/10.1007/s11803-018-0481-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01", 
    "datePublishedReg": "2019-01-01", 
    "description": "Earthquake engineers have made a lot of efforts to derive a comprehensive set of closed form expressions for performance evaluation of frames, which are already presented in guidelines such as SAC/FEMA. These analytical expressions have been developed to estimate the annual probability of exceeding a limit state. In the process of such seismic assessments, some essential assumptions are adopted to simplify the process. One of these fundamental assumptions declares that drift demand at any seismic intensity level follows a lognormal distribution around its median. To investigate the validity of this assumption, this paper describes a case study of the types of errors that could be produced by using the sample median as the central tendency. Based on the Maximum Likelihood Estimation method as well as other statistical evidence, this paper proposes the use of the sample geometric mean instead of the sample median for the central tendency. Further, the results of seismic reliability evaluations of 4 sample frames are compared based on utilizing both the geometric mean and the sample median. In this process, both first and second order power law fits of the hazard curve are implemented to compare the effects of hazard estimation and the selection of the central tendency on the final results. It is observed in the application example that the sample geometric mean could lead to more accurate results.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11803-019-0498-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136595", 
        "issn": [
          "1671-3664", 
          "1993-503X"
        ], 
        "name": "Earthquake Engineering and Engineering Vibration", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Sample geometric mean versus sample median in closed form framework of seismic reliability evaluation: a case study comparison", 
    "pagination": "187-201", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2d0556004d0d13fb981e3fbee08c4f36a8a5a5bfdd9a0d95692beb9ca90f64bd"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11803-019-0498-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111493456"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11803-019-0498-5", 
      "https://app.dimensions.ai/details/publication/pub.1111493456"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000321_0000000321/records_74903_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11803-019-0498-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11803-019-0498-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11803-019-0498-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11803-019-0498-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11803-019-0498-5'


 

This table displays all metadata directly associated to this object as RDF triples.

155 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11803-019-0498-5 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nfb890dd2c8e24978b78dad282517f357
4 schema:citation sg:pub.10.1007/s00362-011-0404-3
5 sg:pub.10.1007/s11803-015-0027-0
6 sg:pub.10.1007/s11803-015-0037-y
7 sg:pub.10.1007/s11803-016-0309-1
8 sg:pub.10.1007/s11803-017-0379-8
9 sg:pub.10.1007/s11803-017-0388-7
10 sg:pub.10.1007/s11803-018-0454-9
11 sg:pub.10.1007/s11803-018-0481-6
12 https://doi.org/10.1002/eqe.141
13 https://doi.org/10.1002/eqe.2265
14 https://doi.org/10.1002/eqe.2300
15 https://doi.org/10.1002/eqe.2522
16 https://doi.org/10.1002/eqe.2610
17 https://doi.org/10.1002/eqe.827
18 https://doi.org/10.1016/j.soildyn.2016.08.025
19 https://doi.org/10.1016/j.strusafe.2013.07.007
20 https://doi.org/10.1061/(asce)0733-9399(2000)126:12(1224)
21 https://doi.org/10.1061/(asce)0733-9445(1994)120:11(3320)
22 https://doi.org/10.1061/(asce)0733-9445(2002)128:4(526)
23 https://doi.org/10.1061/(asce)st.1943-541x.0000215
24 https://doi.org/10.1080/01621459.1954.10501232
25 https://doi.org/10.1193/102912eqs320m
26 https://doi.org/10.1260/1369-4332.18.3.325
27 https://doi.org/10.2307/1268522
28 schema:datePublished 2019-01
29 schema:datePublishedReg 2019-01-01
30 schema:description Earthquake engineers have made a lot of efforts to derive a comprehensive set of closed form expressions for performance evaluation of frames, which are already presented in guidelines such as SAC/FEMA. These analytical expressions have been developed to estimate the annual probability of exceeding a limit state. In the process of such seismic assessments, some essential assumptions are adopted to simplify the process. One of these fundamental assumptions declares that drift demand at any seismic intensity level follows a lognormal distribution around its median. To investigate the validity of this assumption, this paper describes a case study of the types of errors that could be produced by using the sample median as the central tendency. Based on the Maximum Likelihood Estimation method as well as other statistical evidence, this paper proposes the use of the sample geometric mean instead of the sample median for the central tendency. Further, the results of seismic reliability evaluations of 4 sample frames are compared based on utilizing both the geometric mean and the sample median. In this process, both first and second order power law fits of the hazard curve are implemented to compare the effects of hazard estimation and the selection of the central tendency on the final results. It is observed in the application example that the sample geometric mean could lead to more accurate results.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N2e750fe1a3d648ab9bffafac5de244cc
35 N89fae360d1e844b983d621e5d76cc067
36 sg:journal.1136595
37 schema:name Sample geometric mean versus sample median in closed form framework of seismic reliability evaluation: a case study comparison
38 schema:pagination 187-201
39 schema:productId N70b63fe6a0524f5385c24e10b511aca7
40 N953933a361ac4bd5bb0d7b66011e6006
41 Na222fb4c826a476e83faf1dc9d2a60c8
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111493456
43 https://doi.org/10.1007/s11803-019-0498-5
44 schema:sdDatePublished 2019-04-11T08:41
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher Ndf4553d4772d4d8eb92f95134c77f291
47 schema:url https://link.springer.com/10.1007%2Fs11803-019-0498-5
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N1732741ebe944ad5acb3f6c889221fa0 rdf:first sg:person.014450545572.16
52 rdf:rest N92e93ce49d0b4f1598f9c19289c27a4a
53 N2e750fe1a3d648ab9bffafac5de244cc schema:issueNumber 1
54 rdf:type schema:PublicationIssue
55 N70b63fe6a0524f5385c24e10b511aca7 schema:name readcube_id
56 schema:value 2d0556004d0d13fb981e3fbee08c4f36a8a5a5bfdd9a0d95692beb9ca90f64bd
57 rdf:type schema:PropertyValue
58 N89fae360d1e844b983d621e5d76cc067 schema:volumeNumber 18
59 rdf:type schema:PublicationVolume
60 N92e93ce49d0b4f1598f9c19289c27a4a rdf:first sg:person.016220253417.41
61 rdf:rest rdf:nil
62 N953933a361ac4bd5bb0d7b66011e6006 schema:name doi
63 schema:value 10.1007/s11803-019-0498-5
64 rdf:type schema:PropertyValue
65 Na222fb4c826a476e83faf1dc9d2a60c8 schema:name dimensions_id
66 schema:value pub.1111493456
67 rdf:type schema:PropertyValue
68 Ndf4553d4772d4d8eb92f95134c77f291 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 Nfb890dd2c8e24978b78dad282517f357 rdf:first sg:person.011705523617.86
71 rdf:rest N1732741ebe944ad5acb3f6c889221fa0
72 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
73 schema:name Mathematical Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
76 schema:name Statistics
77 rdf:type schema:DefinedTerm
78 sg:journal.1136595 schema:issn 1671-3664
79 1993-503X
80 schema:name Earthquake Engineering and Engineering Vibration
81 rdf:type schema:Periodical
82 sg:person.011705523617.86 schema:affiliation https://www.grid.ac/institutes/grid.411976.c
83 schema:familyName Abyani
84 schema:givenName M.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011705523617.86
86 rdf:type schema:Person
87 sg:person.014450545572.16 schema:affiliation https://www.grid.ac/institutes/grid.411976.c
88 schema:familyName Asgarian
89 schema:givenName B.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014450545572.16
91 rdf:type schema:Person
92 sg:person.016220253417.41 schema:affiliation https://www.grid.ac/institutes/grid.411976.c
93 schema:familyName Zarrin
94 schema:givenName Mohamad
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016220253417.41
96 rdf:type schema:Person
97 sg:pub.10.1007/s00362-011-0404-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040518411
98 https://doi.org/10.1007/s00362-011-0404-3
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/s11803-015-0027-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042259713
101 https://doi.org/10.1007/s11803-015-0027-0
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s11803-015-0037-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1037183206
104 https://doi.org/10.1007/s11803-015-0037-y
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s11803-016-0309-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048643847
107 https://doi.org/10.1007/s11803-016-0309-1
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s11803-017-0379-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074200772
110 https://doi.org/10.1007/s11803-017-0379-8
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s11803-017-0388-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084739760
113 https://doi.org/10.1007/s11803-017-0388-7
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s11803-018-0454-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105453927
116 https://doi.org/10.1007/s11803-018-0454-9
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s11803-018-0481-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107602260
119 https://doi.org/10.1007/s11803-018-0481-6
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1002/eqe.141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033574225
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1002/eqe.2265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016957661
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1002/eqe.2300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022517084
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1002/eqe.2522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049725361
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1002/eqe.2610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043399050
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1002/eqe.827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031375809
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.soildyn.2016.08.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001815817
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.strusafe.2013.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052512764
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1061/(asce)0733-9399(2000)126:12(1224) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057583673
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1061/(asce)0733-9445(1994)120:11(3320) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057598227
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1061/(asce)0733-9445(2002)128:4(526) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057600175
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1061/(asce)st.1943-541x.0000215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057641863
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1080/01621459.1954.10501232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058299173
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1193/102912eqs320m schema:sameAs https://app.dimensions.ai/details/publication/pub.1035911820
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1260/1369-4332.18.3.325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064582427
150 rdf:type schema:CreativeWork
151 https://doi.org/10.2307/1268522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069420824
152 rdf:type schema:CreativeWork
153 https://www.grid.ac/institutes/grid.411976.c schema:alternateName K.N.Toosi University of Technology
154 schema:name Faculty of Civil Engineering, K.N.Toosi University of Technology, 15875-4416, Tehran, Iran
155 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...