Seismic reliability assessment of a steel moment-resisting frame with two different ductility levels using a cloud analysis approach View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

Seyed Bahram Beheshti Aval, Amir Masoumi Verki

ABSTRACT

A cloud method for generating percentile engineering demand parameter versus intensity measure (EDP-IM) curves of a structure subjected to a set of synthetic ground motions is presented. To this end, an ensemble of synthetic ground motions based on available real ones is generated. This is done by using attenuation relationships, duration and suitable Gutenberg-Richter relations attributed to the considered seismic hazard at a given site by estimating a suitable distribution of magnitude and site to source distance. The study aims to clarify the significance of the duration and frequency content on the seismic performance of structures, which were not considered in developing percentile incremental dynamic analysis (IDA) curves. The collapse probabilities of two steel moment-resisting frames with different ductility levels generated by IDA and the proposed cloud method are compared at different intensity levels. When compared with conventional IDA, the suggested cloud analysis (SCA) methodology with the same run number of dynamic analyses was able to develop response hazard curves that were more consistent with site-specific seismic hazards. Eliminating the need to find many real records by generating synthetic records consistent with site-specific seismic hazards from a few available recorded ground motions is another advantage of using this scheme over the IDA method.. More... »

PAGES

171-185

References to SciGraph publications

  • 2015-04. Bayesian Cloud Analysis: efficient structural fragility assessment using linear regression in BULLETIN OF EARTHQUAKE ENGINEERING
  • 2010-07. Distribution of maximum earthquake magnitudes in future time intervals: application to the seismicity of Japan (1923–2007) in EARTH, PLANETS AND SPACE
  • 2017-01. A new methodology for energy-based seismic design of steel moment frames in EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION
  • 2017-07. Effectiveness of two conventional methods for seismic retrofit of steel and RC moment resisting frames based on damage control criteria in EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION
  • 2016-09. Newmark design spectra considering earthquake magnitudes and site categories in EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION
  • 2014-08. Simplified seismic performance assessment and implications for seismic design in EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION
  • 2011-12. Vulnerability of ordinary moment resistant concrete frames in EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION
  • 2014. Eurocode 8 - Design of structures for earthquake resistance in DICTIONARY GEOTECHNICAL ENGINEERING/WÖRTERBUCH GEOTECHNIK
  • 2017-01. Probabilistic seismic loss estimation via endurance time method in EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION
  • 2017-07. Accuracy of three-dimensional seismic ground response analysis in time domain using nonlinear numerical simulations in EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION
  • 2015-09. Equating incremental dynamic analysis with static nonlinear analysis at near-field excitation in EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11803-019-0497-6

    DOI

    http://dx.doi.org/10.1007/s11803-019-0497-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111492466


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0905", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Civil Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "K.N.Toosi University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.411976.c", 
              "name": [
                "Department of Civil Engineering, K. N. Toosi University of Technology, Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Aval", 
            "givenName": "Seyed Bahram Beheshti", 
            "id": "sg:person.012365734713.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012365734713.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "K.N.Toosi University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.411976.c", 
              "name": [
                "Department of Civil Engineering, K. N. Toosi University of Technology, Tehran, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Verki", 
            "givenName": "Amir Masoumi", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11803-011-0086-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005742184", 
              "https://doi.org/10.1007/s11803-011-0086-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11803-016-0341-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006205768", 
              "https://doi.org/10.1007/s11803-016-0341-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11803-016-0341-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006205768", 
              "https://doi.org/10.1007/s11803-016-0341-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/eqe.997", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009669962"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/eqe.997", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009669962"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/eqe.1096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009961561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/eqe.496", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010427785"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/eqe.496", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010427785"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/eqe.876", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011686895"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/eqe.704", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013101288"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/13632460601034049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015784394"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0029-5493(90)90237-r", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019253743"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0029-5493(90)90237-r", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019253743"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11803-014-0242-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019336402", 
              "https://doi.org/10.1007/s11803-014-0242-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.strusafe.2012.12.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020238398"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.5047/eps.2010.06.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021365300", 
              "https://doi.org/10.5047/eps.2010.06.003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1193/1.1643356", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021576456"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.engstruct.2014.04.029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023199524"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-41714-6_51761", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023518438", 
              "https://doi.org/10.1007/978-3-642-41714-6_51761"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1201/b16387-116", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026569799"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.soildyn.2009.10.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028331001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/eqe.1002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028519656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/eqe.1002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028519656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10518-014-9692-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028722950", 
              "https://doi.org/10.1007/s10518-014-9692-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/tal.546", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030300584"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/tal.546", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030300584"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/eqe.141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033574225"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/eqe.605", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034212523"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11803-015-0037-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037183206", 
              "https://doi.org/10.1007/s11803-015-0037-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.soildyn.2010.07.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038687254"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1193/1.1586011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039141750"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1061/(asce)0733-9399(2000)126:12(1224)", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057583673"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1061/(asce)0733-9445(2002)128:4(526)", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057600175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1061/(asce)0733-9445(2002)128:4(546)", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057600177"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1061/(asce)st.1943-541x.0000282", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057641930"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.14256/jce.1082.2014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067229586"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11803-017-0379-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074200772", 
              "https://doi.org/10.1007/s11803-017-0379-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11803-017-0379-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074200772", 
              "https://doi.org/10.1007/s11803-017-0379-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11803-017-0373-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074215248", 
              "https://doi.org/10.1007/s11803-017-0373-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11803-017-0373-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074215248", 
              "https://doi.org/10.1007/s11803-017-0373-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11803-017-0401-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090380308", 
              "https://doi.org/10.1007/s11803-017-0401-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11803-017-0401-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090380308", 
              "https://doi.org/10.1007/s11803-017-0401-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11803-017-0404-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090382294", 
              "https://doi.org/10.1007/s11803-017-0404-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11803-017-0404-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090382294", 
              "https://doi.org/10.1007/s11803-017-0404-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1061/40889(201)5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1097223821"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-01", 
        "datePublishedReg": "2019-01-01", 
        "description": "A cloud method for generating percentile engineering demand parameter versus intensity measure (EDP-IM) curves of a structure subjected to a set of synthetic ground motions is presented. To this end, an ensemble of synthetic ground motions based on available real ones is generated. This is done by using attenuation relationships, duration and suitable Gutenberg-Richter relations attributed to the considered seismic hazard at a given site by estimating a suitable distribution of magnitude and site to source distance. The study aims to clarify the significance of the duration and frequency content on the seismic performance of structures, which were not considered in developing percentile incremental dynamic analysis (IDA) curves. The collapse probabilities of two steel moment-resisting frames with different ductility levels generated by IDA and the proposed cloud method are compared at different intensity levels. When compared with conventional IDA, the suggested cloud analysis (SCA) methodology with the same run number of dynamic analyses was able to develop response hazard curves that were more consistent with site-specific seismic hazards. Eliminating the need to find many real records by generating synthetic records consistent with site-specific seismic hazards from a few available recorded ground motions is another advantage of using this scheme over the IDA method..", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11803-019-0497-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136595", 
            "issn": [
              "1671-3664", 
              "1993-503X"
            ], 
            "name": "Earthquake Engineering and Engineering Vibration", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "18"
          }
        ], 
        "name": "Seismic reliability assessment of a steel moment-resisting frame with two different ductility levels using a cloud analysis approach", 
        "pagination": "171-185", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "1b735c35ed1e2558f00dfbe7a33ff91baee9c21afec06be22c57cb6da26780a7"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11803-019-0497-6"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111492466"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11803-019-0497-6", 
          "https://app.dimensions.ai/details/publication/pub.1111492466"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:41", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000321_0000000321/records_74908_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs11803-019-0497-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11803-019-0497-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11803-019-0497-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11803-019-0497-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11803-019-0497-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    183 TRIPLES      21 PREDICATES      62 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11803-019-0497-6 schema:about anzsrc-for:09
    2 anzsrc-for:0905
    3 schema:author N376b825c7ed5446f9f56ff2b428a00f3
    4 schema:citation sg:pub.10.1007/978-3-642-41714-6_51761
    5 sg:pub.10.1007/s10518-014-9692-z
    6 sg:pub.10.1007/s11803-011-0086-9
    7 sg:pub.10.1007/s11803-014-0242-0
    8 sg:pub.10.1007/s11803-015-0037-y
    9 sg:pub.10.1007/s11803-016-0341-1
    10 sg:pub.10.1007/s11803-017-0373-1
    11 sg:pub.10.1007/s11803-017-0379-8
    12 sg:pub.10.1007/s11803-017-0401-1
    13 sg:pub.10.1007/s11803-017-0404-y
    14 sg:pub.10.5047/eps.2010.06.003
    15 https://doi.org/10.1002/eqe.1002
    16 https://doi.org/10.1002/eqe.1096
    17 https://doi.org/10.1002/eqe.141
    18 https://doi.org/10.1002/eqe.496
    19 https://doi.org/10.1002/eqe.605
    20 https://doi.org/10.1002/eqe.704
    21 https://doi.org/10.1002/eqe.876
    22 https://doi.org/10.1002/eqe.997
    23 https://doi.org/10.1002/tal.546
    24 https://doi.org/10.1016/0029-5493(90)90237-r
    25 https://doi.org/10.1016/j.engstruct.2014.04.029
    26 https://doi.org/10.1016/j.soildyn.2009.10.005
    27 https://doi.org/10.1016/j.soildyn.2010.07.003
    28 https://doi.org/10.1016/j.strusafe.2012.12.002
    29 https://doi.org/10.1061/(asce)0733-9399(2000)126:12(1224)
    30 https://doi.org/10.1061/(asce)0733-9445(2002)128:4(526)
    31 https://doi.org/10.1061/(asce)0733-9445(2002)128:4(546)
    32 https://doi.org/10.1061/(asce)st.1943-541x.0000282
    33 https://doi.org/10.1061/40889(201)5
    34 https://doi.org/10.1080/13632460601034049
    35 https://doi.org/10.1193/1.1586011
    36 https://doi.org/10.1193/1.1643356
    37 https://doi.org/10.1201/b16387-116
    38 https://doi.org/10.14256/jce.1082.2014
    39 schema:datePublished 2019-01
    40 schema:datePublishedReg 2019-01-01
    41 schema:description A cloud method for generating percentile engineering demand parameter versus intensity measure (EDP-IM) curves of a structure subjected to a set of synthetic ground motions is presented. To this end, an ensemble of synthetic ground motions based on available real ones is generated. This is done by using attenuation relationships, duration and suitable Gutenberg-Richter relations attributed to the considered seismic hazard at a given site by estimating a suitable distribution of magnitude and site to source distance. The study aims to clarify the significance of the duration and frequency content on the seismic performance of structures, which were not considered in developing percentile incremental dynamic analysis (IDA) curves. The collapse probabilities of two steel moment-resisting frames with different ductility levels generated by IDA and the proposed cloud method are compared at different intensity levels. When compared with conventional IDA, the suggested cloud analysis (SCA) methodology with the same run number of dynamic analyses was able to develop response hazard curves that were more consistent with site-specific seismic hazards. Eliminating the need to find many real records by generating synthetic records consistent with site-specific seismic hazards from a few available recorded ground motions is another advantage of using this scheme over the IDA method..
    42 schema:genre research_article
    43 schema:inLanguage en
    44 schema:isAccessibleForFree false
    45 schema:isPartOf N35a6a372ad88465a99308b575065559b
    46 Nbb699f260e7247b38c51f2548e444d6e
    47 sg:journal.1136595
    48 schema:name Seismic reliability assessment of a steel moment-resisting frame with two different ductility levels using a cloud analysis approach
    49 schema:pagination 171-185
    50 schema:productId Naad6db6f6a8448eca1c558bbfeafdb66
    51 Ncf1e30a458224ce88d7d10e203bad775
    52 Neff0a38e82c14dbd948b1b6c44c17790
    53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111492466
    54 https://doi.org/10.1007/s11803-019-0497-6
    55 schema:sdDatePublished 2019-04-11T08:41
    56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    57 schema:sdPublisher Nf7485bd903ba4b448f401bbb7360429d
    58 schema:url https://link.springer.com/10.1007%2Fs11803-019-0497-6
    59 sgo:license sg:explorer/license/
    60 sgo:sdDataset articles
    61 rdf:type schema:ScholarlyArticle
    62 N35a6a372ad88465a99308b575065559b schema:volumeNumber 18
    63 rdf:type schema:PublicationVolume
    64 N376b825c7ed5446f9f56ff2b428a00f3 rdf:first sg:person.012365734713.13
    65 rdf:rest N6dcde2f219a44b9483516ba862d4521b
    66 N6d97c2a621d747e68839a33c2e262116 schema:affiliation https://www.grid.ac/institutes/grid.411976.c
    67 schema:familyName Verki
    68 schema:givenName Amir Masoumi
    69 rdf:type schema:Person
    70 N6dcde2f219a44b9483516ba862d4521b rdf:first N6d97c2a621d747e68839a33c2e262116
    71 rdf:rest rdf:nil
    72 Naad6db6f6a8448eca1c558bbfeafdb66 schema:name dimensions_id
    73 schema:value pub.1111492466
    74 rdf:type schema:PropertyValue
    75 Nbb699f260e7247b38c51f2548e444d6e schema:issueNumber 1
    76 rdf:type schema:PublicationIssue
    77 Ncf1e30a458224ce88d7d10e203bad775 schema:name readcube_id
    78 schema:value 1b735c35ed1e2558f00dfbe7a33ff91baee9c21afec06be22c57cb6da26780a7
    79 rdf:type schema:PropertyValue
    80 Neff0a38e82c14dbd948b1b6c44c17790 schema:name doi
    81 schema:value 10.1007/s11803-019-0497-6
    82 rdf:type schema:PropertyValue
    83 Nf7485bd903ba4b448f401bbb7360429d schema:name Springer Nature - SN SciGraph project
    84 rdf:type schema:Organization
    85 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    86 schema:name Engineering
    87 rdf:type schema:DefinedTerm
    88 anzsrc-for:0905 schema:inDefinedTermSet anzsrc-for:
    89 schema:name Civil Engineering
    90 rdf:type schema:DefinedTerm
    91 sg:journal.1136595 schema:issn 1671-3664
    92 1993-503X
    93 schema:name Earthquake Engineering and Engineering Vibration
    94 rdf:type schema:Periodical
    95 sg:person.012365734713.13 schema:affiliation https://www.grid.ac/institutes/grid.411976.c
    96 schema:familyName Aval
    97 schema:givenName Seyed Bahram Beheshti
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012365734713.13
    99 rdf:type schema:Person
    100 sg:pub.10.1007/978-3-642-41714-6_51761 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023518438
    101 https://doi.org/10.1007/978-3-642-41714-6_51761
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/s10518-014-9692-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1028722950
    104 https://doi.org/10.1007/s10518-014-9692-z
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/s11803-011-0086-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005742184
    107 https://doi.org/10.1007/s11803-011-0086-9
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/s11803-014-0242-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019336402
    110 https://doi.org/10.1007/s11803-014-0242-0
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/s11803-015-0037-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1037183206
    113 https://doi.org/10.1007/s11803-015-0037-y
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/s11803-016-0341-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006205768
    116 https://doi.org/10.1007/s11803-016-0341-1
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/s11803-017-0373-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074215248
    119 https://doi.org/10.1007/s11803-017-0373-1
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/s11803-017-0379-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074200772
    122 https://doi.org/10.1007/s11803-017-0379-8
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/s11803-017-0401-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090380308
    125 https://doi.org/10.1007/s11803-017-0401-1
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/s11803-017-0404-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1090382294
    128 https://doi.org/10.1007/s11803-017-0404-y
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.5047/eps.2010.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021365300
    131 https://doi.org/10.5047/eps.2010.06.003
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1002/eqe.1002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028519656
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1002/eqe.1096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009961561
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1002/eqe.141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033574225
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1002/eqe.496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010427785
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1002/eqe.605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034212523
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1002/eqe.704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013101288
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1002/eqe.876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011686895
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1002/eqe.997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009669962
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1002/tal.546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030300584
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1016/0029-5493(90)90237-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1019253743
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1016/j.engstruct.2014.04.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023199524
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1016/j.soildyn.2009.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028331001
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1016/j.soildyn.2010.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038687254
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1016/j.strusafe.2012.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020238398
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1061/(asce)0733-9399(2000)126:12(1224) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057583673
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1061/(asce)0733-9445(2002)128:4(526) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057600175
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1061/(asce)0733-9445(2002)128:4(546) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057600177
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1061/(asce)st.1943-541x.0000282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057641930
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1061/40889(201)5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1097223821
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1080/13632460601034049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015784394
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1193/1.1586011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039141750
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1193/1.1643356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021576456
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1201/b16387-116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026569799
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.14256/jce.1082.2014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067229586
    180 rdf:type schema:CreativeWork
    181 https://www.grid.ac/institutes/grid.411976.c schema:alternateName K.N.Toosi University of Technology
    182 schema:name Department of Civil Engineering, K. N. Toosi University of Technology, Tehran, Iran
    183 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...