A modified domain reduction method for numerical simulation of wave propagation in localized regions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

Chao Luo, Menglin Lou, Guoqing Gui, Hao Wang

ABSTRACT

A modified domain reduction method (MDRM) that introduces damping terms to the original DRM is presented in this paper. To verify the proposed MDRM and compare the computational accuracy of these two methods, a numerical test is designed. The numerical results of the MDRM and DRM are compared using an extended meshed model. The results show that the MDRM significantly improved the computational accuracy of the DRM. Then, the MDRM is compared with two existing conventional methods, namely Liao’s transmitting boundary and viscous-spring boundary with Liu’s method. The MDRM shows its great advancement in computational accuracy, stability and range of applications. This paper also discusses the influence of boundary location on computational accuracy. It can be concluded that smaller models tend to have larger errors. By introducing two dimensionless parameters, φ1 and φ2, the rational distance between the observation point and the MDRM boundary is suggested. When φ1>2 or φ2>13, the relative PGA error can be limited to 5%. In practice, the appropriate model size can be chosen based on these two parameters to achieve desired computational accuracy. More... »

PAGES

35-52

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11803-019-0488-7

DOI

http://dx.doi.org/10.1007/s11803-019-0488-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111502457


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0307", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Theoretical and Computational Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shijiazhuang Tiedao University", 
          "id": "https://www.grid.ac/institutes/grid.440641.3", 
          "name": [
            "School of Civil Engineering, Shijiazhuang Tiedao University, 050043, Hebei, China", 
            "State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, 200092, Shanghai, China", 
            "Cooperative Innovation Center of Disaster Prevention and Mitigation for Large Infrastructure in Hebei province (Shijiazhuang Tiedao University), Hebei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luo", 
        "givenName": "Chao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shijiazhuang Tiedao University", 
          "id": "https://www.grid.ac/institutes/grid.440641.3", 
          "name": [
            "School of Civil Engineering, Shijiazhuang Tiedao University, 050043, Hebei, China", 
            "Cooperative Innovation Center of Disaster Prevention and Mitigation for Large Infrastructure in Hebei province (Shijiazhuang Tiedao University), Hebei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lou", 
        "givenName": "Menglin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jinggangshan University", 
          "id": "https://www.grid.ac/institutes/grid.440809.1", 
          "name": [
            "School of Architecture and Civil Engineering, Jinggangshan University, 343009, Jiangxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gui", 
        "givenName": "Guoqing", 
        "id": "sg:person.01265022736.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265022736.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shijiazhuang Tiedao University", 
          "id": "https://www.grid.ac/institutes/grid.440641.3", 
          "name": [
            "School of Civil Engineering, Shijiazhuang Tiedao University, 050043, Hebei, China", 
            "State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, 200092, Shanghai, China", 
            "Cooperative Innovation Center of Disaster Prevention and Mitigation for Large Infrastructure in Hebei province (Shijiazhuang Tiedao University), Hebei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Hao", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/nag.713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000130573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0261-7277(84)90033-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011338356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0261-7277(84)90033-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011338356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9991(75)90102-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012079555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1785/0120010252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015771096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nag.641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016248240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/eqe.896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020584268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.soildyn.2016.10.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021134369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.soildyn.2016.10.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021134369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.soildyn.2016.10.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021134369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1785/0120010251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024269748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10518-011-9289-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024403583", 
          "https://doi.org/10.1007/s10518-011-9289-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1193/102412eqs315m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028688268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11803-016-0328-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030427922", 
          "https://doi.org/10.1007/s11803-016-0328-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11803-016-0328-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030427922", 
          "https://doi.org/10.1007/s11803-016-0328-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nucengdes.2013.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031505162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/eqe.4290050306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034873888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10518-011-9249-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041647985", 
          "https://doi.org/10.1007/s10518-011-9249-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cjg2.269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043157450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compgeo.2011.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043171789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0267-7261(00)00029-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043443127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nucengdes.2016.04.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044746480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nucengdes.2016.04.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044746480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nucengdes.2016.04.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044746480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nucengdes.2016.04.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044746480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11803-006-0585-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045174114", 
          "https://doi.org/10.1007/s11803-006-0585-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/eqe.4290210105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047336961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/eqe.4290210105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047336961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1785/0120020100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050425445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcph.1994.1159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052535130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9399(1988)114:6(1011)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057581507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9399(1994)120:1(25)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057582552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11803-017-0364-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074197674", 
          "https://doi.org/10.1007/s11803-017-0364-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11803-017-0364-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074197674", 
          "https://doi.org/10.1007/s11803-017-0364-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11803-017-0401-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090380308", 
          "https://doi.org/10.1007/s11803-017-0401-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11803-017-0401-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090380308", 
          "https://doi.org/10.1007/s11803-017-0401-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11803-018-0460-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105465560", 
          "https://doi.org/10.1007/s11803-018-0460-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11803-018-0460-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105465560", 
          "https://doi.org/10.1007/s11803-018-0460-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01", 
    "datePublishedReg": "2019-01-01", 
    "description": "A modified domain reduction method (MDRM) that introduces damping terms to the original DRM is presented in this paper. To verify the proposed MDRM and compare the computational accuracy of these two methods, a numerical test is designed. The numerical results of the MDRM and DRM are compared using an extended meshed model. The results show that the MDRM significantly improved the computational accuracy of the DRM. Then, the MDRM is compared with two existing conventional methods, namely Liao\u2019s transmitting boundary and viscous-spring boundary with Liu\u2019s method. The MDRM shows its great advancement in computational accuracy, stability and range of applications. This paper also discusses the influence of boundary location on computational accuracy. It can be concluded that smaller models tend to have larger errors. By introducing two dimensionless parameters, \u03c61 and \u03c62, the rational distance between the observation point and the MDRM boundary is suggested. When \u03c61>2 or \u03c62>13, the relative PGA error can be limited to 5%. In practice, the appropriate model size can be chosen based on these two parameters to achieve desired computational accuracy.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11803-019-0488-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6979034", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136595", 
        "issn": [
          "1671-3664", 
          "1993-503X"
        ], 
        "name": "Earthquake Engineering and Engineering Vibration", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "A modified domain reduction method for numerical simulation of wave propagation in localized regions", 
    "pagination": "35-52", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d935a1237cb632bc82c32ac3306f24fed23cf4e8626537db32ac900389193cac"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11803-019-0488-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111502457"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11803-019-0488-7", 
      "https://app.dimensions.ai/details/publication/pub.1111502457"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000321_0000000321/records_74928_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11803-019-0488-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11803-019-0488-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11803-019-0488-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11803-019-0488-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11803-019-0488-7'


 

This table displays all metadata directly associated to this object as RDF triples.

174 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11803-019-0488-7 schema:about anzsrc-for:03
2 anzsrc-for:0307
3 schema:author N5fbe67205ac342dfa3a171f14c28f0e6
4 schema:citation sg:pub.10.1007/s10518-011-9249-3
5 sg:pub.10.1007/s10518-011-9289-8
6 sg:pub.10.1007/s11803-006-0585-2
7 sg:pub.10.1007/s11803-016-0328-y
8 sg:pub.10.1007/s11803-017-0364-2
9 sg:pub.10.1007/s11803-017-0401-1
10 sg:pub.10.1007/s11803-018-0460-y
11 https://doi.org/10.1002/cjg2.269
12 https://doi.org/10.1002/eqe.4290050306
13 https://doi.org/10.1002/eqe.4290210105
14 https://doi.org/10.1002/eqe.896
15 https://doi.org/10.1002/nag.641
16 https://doi.org/10.1002/nag.713
17 https://doi.org/10.1006/jcph.1994.1159
18 https://doi.org/10.1016/0021-9991(75)90102-3
19 https://doi.org/10.1016/0261-7277(84)90033-0
20 https://doi.org/10.1016/j.compgeo.2011.08.003
21 https://doi.org/10.1016/j.nucengdes.2013.07.003
22 https://doi.org/10.1016/j.nucengdes.2016.04.026
23 https://doi.org/10.1016/j.soildyn.2016.10.031
24 https://doi.org/10.1016/s0267-7261(00)00029-4
25 https://doi.org/10.1061/(asce)0733-9399(1988)114:6(1011)
26 https://doi.org/10.1061/(asce)0733-9399(1994)120:1(25)
27 https://doi.org/10.1193/102412eqs315m
28 https://doi.org/10.1785/0120010251
29 https://doi.org/10.1785/0120010252
30 https://doi.org/10.1785/0120020100
31 schema:datePublished 2019-01
32 schema:datePublishedReg 2019-01-01
33 schema:description A modified domain reduction method (MDRM) that introduces damping terms to the original DRM is presented in this paper. To verify the proposed MDRM and compare the computational accuracy of these two methods, a numerical test is designed. The numerical results of the MDRM and DRM are compared using an extended meshed model. The results show that the MDRM significantly improved the computational accuracy of the DRM. Then, the MDRM is compared with two existing conventional methods, namely Liao’s transmitting boundary and viscous-spring boundary with Liu’s method. The MDRM shows its great advancement in computational accuracy, stability and range of applications. This paper also discusses the influence of boundary location on computational accuracy. It can be concluded that smaller models tend to have larger errors. By introducing two dimensionless parameters, φ1 and φ2, the rational distance between the observation point and the MDRM boundary is suggested. When φ1>2 or φ2>13, the relative PGA error can be limited to 5%. In practice, the appropriate model size can be chosen based on these two parameters to achieve desired computational accuracy.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N6dbe6168084e4e02a13aa1151dcaa7e8
38 Na1d47f6126c947ffa4ccf594a58cb395
39 sg:journal.1136595
40 schema:name A modified domain reduction method for numerical simulation of wave propagation in localized regions
41 schema:pagination 35-52
42 schema:productId Ncf1543c666964bcd826860375425801c
43 Ne951be9ac5d843a489c5797799b61dbf
44 Nfa80bea863fb4c2b86e577b83d9af565
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111502457
46 https://doi.org/10.1007/s11803-019-0488-7
47 schema:sdDatePublished 2019-04-11T08:42
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N96662be5892040b197b494aa969641db
50 schema:url https://link.springer.com/10.1007%2Fs11803-019-0488-7
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N4acb6d7ccc604cd7bc73256fb15be137 schema:affiliation https://www.grid.ac/institutes/grid.440641.3
55 schema:familyName Wang
56 schema:givenName Hao
57 rdf:type schema:Person
58 N5fbe67205ac342dfa3a171f14c28f0e6 rdf:first Nbe74fe5df36f4e358331f3b5e00689f4
59 rdf:rest Nbf2da010630d43dd8517a4e28c8e456c
60 N6dbe6168084e4e02a13aa1151dcaa7e8 schema:issueNumber 1
61 rdf:type schema:PublicationIssue
62 N96662be5892040b197b494aa969641db schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N9d613744e92946f788966ddc4b351038 schema:affiliation https://www.grid.ac/institutes/grid.440641.3
65 schema:familyName Lou
66 schema:givenName Menglin
67 rdf:type schema:Person
68 Na1d47f6126c947ffa4ccf594a58cb395 schema:volumeNumber 18
69 rdf:type schema:PublicationVolume
70 Nbe74fe5df36f4e358331f3b5e00689f4 schema:affiliation https://www.grid.ac/institutes/grid.440641.3
71 schema:familyName Luo
72 schema:givenName Chao
73 rdf:type schema:Person
74 Nbf2da010630d43dd8517a4e28c8e456c rdf:first N9d613744e92946f788966ddc4b351038
75 rdf:rest Nca2a04cf991f4763a560e73c850026c1
76 Nca2a04cf991f4763a560e73c850026c1 rdf:first sg:person.01265022736.93
77 rdf:rest Nd23e46099bfc472684ca469ed56e35c9
78 Ncf1543c666964bcd826860375425801c schema:name readcube_id
79 schema:value d935a1237cb632bc82c32ac3306f24fed23cf4e8626537db32ac900389193cac
80 rdf:type schema:PropertyValue
81 Nd23e46099bfc472684ca469ed56e35c9 rdf:first N4acb6d7ccc604cd7bc73256fb15be137
82 rdf:rest rdf:nil
83 Ne951be9ac5d843a489c5797799b61dbf schema:name dimensions_id
84 schema:value pub.1111502457
85 rdf:type schema:PropertyValue
86 Nfa80bea863fb4c2b86e577b83d9af565 schema:name doi
87 schema:value 10.1007/s11803-019-0488-7
88 rdf:type schema:PropertyValue
89 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
90 schema:name Chemical Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0307 schema:inDefinedTermSet anzsrc-for:
93 schema:name Theoretical and Computational Chemistry
94 rdf:type schema:DefinedTerm
95 sg:grant.6979034 http://pending.schema.org/fundedItem sg:pub.10.1007/s11803-019-0488-7
96 rdf:type schema:MonetaryGrant
97 sg:journal.1136595 schema:issn 1671-3664
98 1993-503X
99 schema:name Earthquake Engineering and Engineering Vibration
100 rdf:type schema:Periodical
101 sg:person.01265022736.93 schema:affiliation https://www.grid.ac/institutes/grid.440809.1
102 schema:familyName Gui
103 schema:givenName Guoqing
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265022736.93
105 rdf:type schema:Person
106 sg:pub.10.1007/s10518-011-9249-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041647985
107 https://doi.org/10.1007/s10518-011-9249-3
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s10518-011-9289-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024403583
110 https://doi.org/10.1007/s10518-011-9289-8
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s11803-006-0585-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045174114
113 https://doi.org/10.1007/s11803-006-0585-2
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s11803-016-0328-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1030427922
116 https://doi.org/10.1007/s11803-016-0328-y
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s11803-017-0364-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074197674
119 https://doi.org/10.1007/s11803-017-0364-2
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s11803-017-0401-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090380308
122 https://doi.org/10.1007/s11803-017-0401-1
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s11803-018-0460-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1105465560
125 https://doi.org/10.1007/s11803-018-0460-y
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1002/cjg2.269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043157450
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1002/eqe.4290050306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034873888
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1002/eqe.4290210105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047336961
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1002/eqe.896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020584268
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1002/nag.641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016248240
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1002/nag.713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000130573
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1006/jcph.1994.1159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052535130
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/0021-9991(75)90102-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012079555
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/0261-7277(84)90033-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011338356
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.compgeo.2011.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043171789
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.nucengdes.2013.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031505162
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.nucengdes.2016.04.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044746480
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.soildyn.2016.10.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021134369
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/s0267-7261(00)00029-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043443127
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1061/(asce)0733-9399(1988)114:6(1011) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057581507
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1061/(asce)0733-9399(1994)120:1(25) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057582552
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1193/102412eqs315m schema:sameAs https://app.dimensions.ai/details/publication/pub.1028688268
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1785/0120010251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024269748
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1785/0120010252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015771096
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1785/0120020100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050425445
166 rdf:type schema:CreativeWork
167 https://www.grid.ac/institutes/grid.440641.3 schema:alternateName Shijiazhuang Tiedao University
168 schema:name Cooperative Innovation Center of Disaster Prevention and Mitigation for Large Infrastructure in Hebei province (Shijiazhuang Tiedao University), Hebei, China
169 School of Civil Engineering, Shijiazhuang Tiedao University, 050043, Hebei, China
170 State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, 200092, Shanghai, China
171 rdf:type schema:Organization
172 https://www.grid.ac/institutes/grid.440809.1 schema:alternateName Jinggangshan University
173 schema:name School of Architecture and Civil Engineering, Jinggangshan University, 343009, Jiangxi, China
174 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...