Seismic liquefaction potential assessment by using Relevance Vector Machine View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-12

AUTHORS

Pijush Samui

ABSTRACT

Determining the liquefaction potential of soil is important in earthquake engineering. This study proposes the use of the Relevance Vector Machine (RVM) to determine the liquefaction potential of soil by using actual cone penetration test (CPT) data. RVM is based on a Bayesian formulation of a linear model with an appropriate prior that results in a sparse representation. The results are compared with a widely used artificial neural network (ANN) model. Overall, the RVM shows good performance and is proven to be more accurate than the ANN model. It also provides probabilistic output. The model provides a viable tool for earthquake engineers to assess seismic conditions for sites that are susceptible to liquefaction. More... »

PAGES

331-336

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11803-007-0766-7

DOI

http://dx.doi.org/10.1007/s11803-007-0766-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019648525


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Indian Institute of Science Bangalore", 
          "id": "https://www.grid.ac/institutes/grid.34980.36", 
          "name": [
            "Department of Civil Engineering, Indian Institute of Science, 560012, Bangalore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Samui", 
        "givenName": "Pijush", 
        "id": "sg:person.010653044475.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010653044475.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1139/t99-011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000340876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9410(1983)109:3(458)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057585704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9410(1985)111:12(1425)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057586073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9410(1988)114:4(389)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057586667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9410(1994)120:9(1467)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057587906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9410(1996)122:1(70)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057588120"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-12", 
    "datePublishedReg": "2007-12-01", 
    "description": "Determining the liquefaction potential of soil is important in earthquake engineering. This study proposes the use of the Relevance Vector Machine (RVM) to determine the liquefaction potential of soil by using actual cone penetration test (CPT) data. RVM is based on a Bayesian formulation of a linear model with an appropriate prior that results in a sparse representation. The results are compared with a widely used artificial neural network (ANN) model. Overall, the RVM shows good performance and is proven to be more accurate than the ANN model. It also provides probabilistic output. The model provides a viable tool for earthquake engineers to assess seismic conditions for sites that are susceptible to liquefaction.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11803-007-0766-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136595", 
        "issn": [
          "1671-3664", 
          "1993-503X"
        ], 
        "name": "Earthquake Engineering and Engineering Vibration", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Seismic liquefaction potential assessment by using Relevance Vector Machine", 
    "pagination": "331-336", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5d9da6550565a1c8e28cce742f80995955b68472f35dbb04013e62da93daaac7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11803-007-0766-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019648525"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11803-007-0766-7", 
      "https://app.dimensions.ai/details/publication/pub.1019648525"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000521.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11803-007-0766-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11803-007-0766-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11803-007-0766-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11803-007-0766-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11803-007-0766-7'


 

This table displays all metadata directly associated to this object as RDF triples.

79 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11803-007-0766-7 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N000aadf7b55f4a4380171c43eab8e23d
4 schema:citation https://doi.org/10.1061/(asce)0733-9410(1983)109:3(458)
5 https://doi.org/10.1061/(asce)0733-9410(1985)111:12(1425)
6 https://doi.org/10.1061/(asce)0733-9410(1988)114:4(389)
7 https://doi.org/10.1061/(asce)0733-9410(1994)120:9(1467)
8 https://doi.org/10.1061/(asce)0733-9410(1996)122:1(70)
9 https://doi.org/10.1139/t99-011
10 schema:datePublished 2007-12
11 schema:datePublishedReg 2007-12-01
12 schema:description Determining the liquefaction potential of soil is important in earthquake engineering. This study proposes the use of the Relevance Vector Machine (RVM) to determine the liquefaction potential of soil by using actual cone penetration test (CPT) data. RVM is based on a Bayesian formulation of a linear model with an appropriate prior that results in a sparse representation. The results are compared with a widely used artificial neural network (ANN) model. Overall, the RVM shows good performance and is proven to be more accurate than the ANN model. It also provides probabilistic output. The model provides a viable tool for earthquake engineers to assess seismic conditions for sites that are susceptible to liquefaction.
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N298bcd7123ca477d8d171d98b7d3d9ae
17 Nad1fe39d4488467faf80980a3b627327
18 sg:journal.1136595
19 schema:name Seismic liquefaction potential assessment by using Relevance Vector Machine
20 schema:pagination 331-336
21 schema:productId N512cc382a7da40c6978f5f3b24df0fb3
22 N728907532bc0464096ba98903e8fedb4
23 Nd5ae4f903ac346fa82693aae15930c9f
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019648525
25 https://doi.org/10.1007/s11803-007-0766-7
26 schema:sdDatePublished 2019-04-10T13:19
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N8e23f1af44ae44bdaa93ba392c58d47a
29 schema:url http://link.springer.com/10.1007%2Fs11803-007-0766-7
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N000aadf7b55f4a4380171c43eab8e23d rdf:first sg:person.010653044475.30
34 rdf:rest rdf:nil
35 N298bcd7123ca477d8d171d98b7d3d9ae schema:volumeNumber 6
36 rdf:type schema:PublicationVolume
37 N512cc382a7da40c6978f5f3b24df0fb3 schema:name dimensions_id
38 schema:value pub.1019648525
39 rdf:type schema:PropertyValue
40 N728907532bc0464096ba98903e8fedb4 schema:name doi
41 schema:value 10.1007/s11803-007-0766-7
42 rdf:type schema:PropertyValue
43 N8e23f1af44ae44bdaa93ba392c58d47a schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 Nad1fe39d4488467faf80980a3b627327 schema:issueNumber 4
46 rdf:type schema:PublicationIssue
47 Nd5ae4f903ac346fa82693aae15930c9f schema:name readcube_id
48 schema:value 5d9da6550565a1c8e28cce742f80995955b68472f35dbb04013e62da93daaac7
49 rdf:type schema:PropertyValue
50 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
51 schema:name Information and Computing Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
54 schema:name Artificial Intelligence and Image Processing
55 rdf:type schema:DefinedTerm
56 sg:journal.1136595 schema:issn 1671-3664
57 1993-503X
58 schema:name Earthquake Engineering and Engineering Vibration
59 rdf:type schema:Periodical
60 sg:person.010653044475.30 schema:affiliation https://www.grid.ac/institutes/grid.34980.36
61 schema:familyName Samui
62 schema:givenName Pijush
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010653044475.30
64 rdf:type schema:Person
65 https://doi.org/10.1061/(asce)0733-9410(1983)109:3(458) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057585704
66 rdf:type schema:CreativeWork
67 https://doi.org/10.1061/(asce)0733-9410(1985)111:12(1425) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057586073
68 rdf:type schema:CreativeWork
69 https://doi.org/10.1061/(asce)0733-9410(1988)114:4(389) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057586667
70 rdf:type schema:CreativeWork
71 https://doi.org/10.1061/(asce)0733-9410(1994)120:9(1467) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057587906
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1061/(asce)0733-9410(1996)122:1(70) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057588120
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1139/t99-011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000340876
76 rdf:type schema:CreativeWork
77 https://www.grid.ac/institutes/grid.34980.36 schema:alternateName Indian Institute of Science Bangalore
78 schema:name Department of Civil Engineering, Indian Institute of Science, 560012, Bangalore, India
79 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...