A model study on dynamical processes of phytoplankton in Laizhou Bay View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-02

AUTHORS

Lanlan Yu, Bo Yang, Wensheng Jiang, Keqiang Li

ABSTRACT

A three-dimensional ecosystem model, using a PIC (Particle-In-Cell) method, is developed to reproduce the annual cycle and seasonal variation of nutrients and phytoplankton biomass in Laizhou Bay. Eight state variables, i.e., DIN (dissolved inorganic nitrogen), phosphate, DON (dissolved organic nitrogen), DOP (dissolved organic phosphorus), COD (chemical oxygen demand), chlorophyll-a (Chl-a), detritus and the zooplankton biomass, are included in the model. The model successfully reproduces the observed temporal and spatial variations of nutrients and Chl-a biomass distributions in the bay. The nutrient concentrations are at high level in winter and at low level in summer. Double-peak structure of the phytoplankton (PPT) biomass exists in Laizhou Bay, corresponding to a spring and an autumn bloom respectively. Several numerical experiments are carried out to examine the nutrient limitation, and the importance of the discharges of the Yellow River and Xiaoqinghe River. Both DIN limitation and phosphate limitation exist in some areas of the bay, with the former being more significant than the latter. The Yellow River and Xiaoqinghe River are the main pollution sources of nutrients in Laizhou Bay. During the flood season, the algal growth is inhibited in the bay with the Yellow River discharges being excluded in the experiment, while in spring, the algal growth is enhanced with the Xiaoqinghe River excluded. More... »

PAGES

23-31

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11802-014-1912-2

DOI

http://dx.doi.org/10.1007/s11802-014-1912-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039735346


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0399", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ocean University of China", 
          "id": "https://www.grid.ac/institutes/grid.4422.0", 
          "name": [
            "Physical Oceanography Laboratory, Ocean University of China, 266100, Qingdao, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Lanlan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ocean University of China", 
          "id": "https://www.grid.ac/institutes/grid.4422.0", 
          "name": [
            "Physical Oceanography Laboratory, Ocean University of China, 266100, Qingdao, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Bo", 
        "id": "sg:person.013474073703.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013474073703.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ocean University of China", 
          "id": "https://www.grid.ac/institutes/grid.4422.0", 
          "name": [
            "Physical Oceanography Laboratory, Ocean University of China, 266100, Qingdao, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Wensheng", 
        "id": "sg:person.015571404547.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015571404547.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ocean University of China", 
          "id": "https://www.grid.ac/institutes/grid.4422.0", 
          "name": [
            "College of Chemistry and Chemical Engineering, Ocean University of China, 266100, Qingdao, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Keqiang", 
        "id": "sg:person.01206250344.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206250344.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jmarsys.2003.09.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002871850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmarsys.2003.09.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006932405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0272-7714(06)80008-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016003324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csr.2007.01.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017831374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02328975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018794262", 
          "https://doi.org/10.1007/bf02328975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02328975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018794262", 
          "https://doi.org/10.1007/bf02328975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4319/lo.1994.39.7.1669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024823540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11802-009-0133-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026268130", 
          "https://doi.org/10.1007/s11802-009-0133-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11802-009-0133-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026268130", 
          "https://doi.org/10.1007/s11802-009-0133-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolmodel.2005.01.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033581391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csr.2008.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041999830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2419.1998.00084.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044740829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2419.1998.00084.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044740829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0278-4343(99)00026-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044901787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.marenvres.2010.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045458597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0079-6611(93)90001-t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050326226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0079-6611(93)90001-t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050326226"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-02", 
    "datePublishedReg": "2014-02-01", 
    "description": "A three-dimensional ecosystem model, using a PIC (Particle-In-Cell) method, is developed to reproduce the annual cycle and seasonal variation of nutrients and phytoplankton biomass in Laizhou Bay. Eight state variables, i.e., DIN (dissolved inorganic nitrogen), phosphate, DON (dissolved organic nitrogen), DOP (dissolved organic phosphorus), COD (chemical oxygen demand), chlorophyll-a (Chl-a), detritus and the zooplankton biomass, are included in the model. The model successfully reproduces the observed temporal and spatial variations of nutrients and Chl-a biomass distributions in the bay. The nutrient concentrations are at high level in winter and at low level in summer. Double-peak structure of the phytoplankton (PPT) biomass exists in Laizhou Bay, corresponding to a spring and an autumn bloom respectively. Several numerical experiments are carried out to examine the nutrient limitation, and the importance of the discharges of the Yellow River and Xiaoqinghe River. Both DIN limitation and phosphate limitation exist in some areas of the bay, with the former being more significant than the latter. The Yellow River and Xiaoqinghe River are the main pollution sources of nutrients in Laizhou Bay. During the flood season, the algal growth is inhibited in the bay with the Yellow River discharges being excluded in the experiment, while in spring, the algal growth is enhanced with the Xiaoqinghe River excluded.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11802-014-1912-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1034099", 
        "issn": [
          "1672-5182", 
          "1993-5021"
        ], 
        "name": "Journal of Ocean University of China", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "A model study on dynamical processes of phytoplankton in Laizhou Bay", 
    "pagination": "23-31", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bd4801e12743a78fb735f34304df7ed9f5eb7a04d53ee5beedfdc43b071a804c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11802-014-1912-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039735346"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11802-014-1912-2", 
      "https://app.dimensions.ai/details/publication/pub.1039735346"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000523.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11802-014-1912-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11802-014-1912-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11802-014-1912-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11802-014-1912-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11802-014-1912-2'


 

This table displays all metadata directly associated to this object as RDF triples.

123 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11802-014-1912-2 schema:about anzsrc-for:03
2 anzsrc-for:0399
3 schema:author Na6251cea468e4cba934f7f3df5fc2f96
4 schema:citation sg:pub.10.1007/bf02328975
5 sg:pub.10.1007/s11802-009-0133-6
6 https://doi.org/10.1016/0079-6611(93)90001-t
7 https://doi.org/10.1016/j.csr.2007.01.015
8 https://doi.org/10.1016/j.csr.2008.09.004
9 https://doi.org/10.1016/j.ecolmodel.2005.01.017
10 https://doi.org/10.1016/j.jmarsys.2003.09.009
11 https://doi.org/10.1016/j.jmarsys.2003.09.012
12 https://doi.org/10.1016/j.marenvres.2010.06.003
13 https://doi.org/10.1016/s0272-7714(06)80008-9
14 https://doi.org/10.1016/s0278-4343(99)00026-6
15 https://doi.org/10.1046/j.1365-2419.1998.00084.x
16 https://doi.org/10.4319/lo.1994.39.7.1669
17 schema:datePublished 2014-02
18 schema:datePublishedReg 2014-02-01
19 schema:description A three-dimensional ecosystem model, using a PIC (Particle-In-Cell) method, is developed to reproduce the annual cycle and seasonal variation of nutrients and phytoplankton biomass in Laizhou Bay. Eight state variables, i.e., DIN (dissolved inorganic nitrogen), phosphate, DON (dissolved organic nitrogen), DOP (dissolved organic phosphorus), COD (chemical oxygen demand), chlorophyll-a (Chl-a), detritus and the zooplankton biomass, are included in the model. The model successfully reproduces the observed temporal and spatial variations of nutrients and Chl-a biomass distributions in the bay. The nutrient concentrations are at high level in winter and at low level in summer. Double-peak structure of the phytoplankton (PPT) biomass exists in Laizhou Bay, corresponding to a spring and an autumn bloom respectively. Several numerical experiments are carried out to examine the nutrient limitation, and the importance of the discharges of the Yellow River and Xiaoqinghe River. Both DIN limitation and phosphate limitation exist in some areas of the bay, with the former being more significant than the latter. The Yellow River and Xiaoqinghe River are the main pollution sources of nutrients in Laizhou Bay. During the flood season, the algal growth is inhibited in the bay with the Yellow River discharges being excluded in the experiment, while in spring, the algal growth is enhanced with the Xiaoqinghe River excluded.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N5a67fb94512f49cc890cd690cac0e40e
24 N68e10f5d7dd94dc28e1efa01f6430540
25 sg:journal.1034099
26 schema:name A model study on dynamical processes of phytoplankton in Laizhou Bay
27 schema:pagination 23-31
28 schema:productId N25c0373436c84fd9a1e4102f98170b01
29 N6598c699cc644cc0bee2e27626b540d8
30 N902acce609ad45639fae93938d1e1cd6
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039735346
32 https://doi.org/10.1007/s11802-014-1912-2
33 schema:sdDatePublished 2019-04-10T17:34
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N587080cf6bed4fcd90d88890d4c29221
36 schema:url http://link.springer.com/10.1007%2Fs11802-014-1912-2
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N09677a46cac04a64be8c21fab2c5a832 schema:affiliation https://www.grid.ac/institutes/grid.4422.0
41 schema:familyName Yu
42 schema:givenName Lanlan
43 rdf:type schema:Person
44 N25c0373436c84fd9a1e4102f98170b01 schema:name dimensions_id
45 schema:value pub.1039735346
46 rdf:type schema:PropertyValue
47 N587080cf6bed4fcd90d88890d4c29221 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N5a67fb94512f49cc890cd690cac0e40e schema:volumeNumber 13
50 rdf:type schema:PublicationVolume
51 N6598c699cc644cc0bee2e27626b540d8 schema:name readcube_id
52 schema:value bd4801e12743a78fb735f34304df7ed9f5eb7a04d53ee5beedfdc43b071a804c
53 rdf:type schema:PropertyValue
54 N68e10f5d7dd94dc28e1efa01f6430540 schema:issueNumber 1
55 rdf:type schema:PublicationIssue
56 N8009966d3b99466fb4c83f1659bb1cbe rdf:first sg:person.01206250344.47
57 rdf:rest rdf:nil
58 N902acce609ad45639fae93938d1e1cd6 schema:name doi
59 schema:value 10.1007/s11802-014-1912-2
60 rdf:type schema:PropertyValue
61 Na6251cea468e4cba934f7f3df5fc2f96 rdf:first N09677a46cac04a64be8c21fab2c5a832
62 rdf:rest Nf5d32ed052434b0f81c203d257e2d258
63 Nf5d32ed052434b0f81c203d257e2d258 rdf:first sg:person.013474073703.06
64 rdf:rest Nfab8c73b5bad4e6281e3c8f969c36b95
65 Nfab8c73b5bad4e6281e3c8f969c36b95 rdf:first sg:person.015571404547.74
66 rdf:rest N8009966d3b99466fb4c83f1659bb1cbe
67 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
68 schema:name Chemical Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0399 schema:inDefinedTermSet anzsrc-for:
71 schema:name Other Chemical Sciences
72 rdf:type schema:DefinedTerm
73 sg:journal.1034099 schema:issn 1672-5182
74 1993-5021
75 schema:name Journal of Ocean University of China
76 rdf:type schema:Periodical
77 sg:person.01206250344.47 schema:affiliation https://www.grid.ac/institutes/grid.4422.0
78 schema:familyName Li
79 schema:givenName Keqiang
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206250344.47
81 rdf:type schema:Person
82 sg:person.013474073703.06 schema:affiliation https://www.grid.ac/institutes/grid.4422.0
83 schema:familyName Yang
84 schema:givenName Bo
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013474073703.06
86 rdf:type schema:Person
87 sg:person.015571404547.74 schema:affiliation https://www.grid.ac/institutes/grid.4422.0
88 schema:familyName Jiang
89 schema:givenName Wensheng
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015571404547.74
91 rdf:type schema:Person
92 sg:pub.10.1007/bf02328975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018794262
93 https://doi.org/10.1007/bf02328975
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/s11802-009-0133-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026268130
96 https://doi.org/10.1007/s11802-009-0133-6
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/0079-6611(93)90001-t schema:sameAs https://app.dimensions.ai/details/publication/pub.1050326226
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.csr.2007.01.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017831374
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.csr.2008.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041999830
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.ecolmodel.2005.01.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033581391
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.jmarsys.2003.09.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006932405
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.jmarsys.2003.09.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002871850
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.marenvres.2010.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045458597
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/s0272-7714(06)80008-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016003324
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/s0278-4343(99)00026-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044901787
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1046/j.1365-2419.1998.00084.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044740829
117 rdf:type schema:CreativeWork
118 https://doi.org/10.4319/lo.1994.39.7.1669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024823540
119 rdf:type schema:CreativeWork
120 https://www.grid.ac/institutes/grid.4422.0 schema:alternateName Ocean University of China
121 schema:name College of Chemistry and Chemical Engineering, Ocean University of China, 266100, Qingdao, P. R. China
122 Physical Oceanography Laboratory, Ocean University of China, 266100, Qingdao, P. R. China
123 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...