Relative Reduction and Buchberger’s Algorithm in Filtered Free Modules View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-04-07

AUTHORS

Christoph Fürst, Alexander Levin

ABSTRACT

In this paper we develop a relative Gröbner basis method for a wide class of filtered modules. Our general setting covers the cases of modules over rings of differential, difference, inversive difference and difference–differential operators, Weyl algebras and multiparameter twisted Weyl algebras (the last class of rings includes the classes of quantized Weyl algebras and twisted generalized Weyl algebras). In particular, we obtain a Buchberger-type algorithm for constructing relative Gröbner bases of filtered free modules. More... »

PAGES

329-339

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11786-017-0317-1

DOI

http://dx.doi.org/10.1007/s11786-017-0317-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084519838


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Research Institute for Symbolic Computation (RISC) Linz, Altenberger Stra\u00dfe 69, 4040, Linz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.9970.7", 
          "name": [
            "Research Institute for Symbolic Computation (RISC) Linz, Altenberger Stra\u00dfe 69, 4040, Linz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "F\u00fcrst", 
        "givenName": "Christoph", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, The Catholic University of America, 20064, Washington, DC, USA", 
          "id": "http://www.grid.ac/institutes/grid.39936.36", 
          "name": [
            "Department of Mathematics, The Catholic University of America, 20064, Washington, DC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Levin", 
        "givenName": "Alexander", 
        "id": "sg:person.013227145261.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013227145261.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4020-6947-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018820707", 
          "https://doi.org/10.1007/978-1-4020-6947-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11425-008-0081-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018088530", 
          "https://doi.org/10.1007/s11425-008-0081-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11464-015-0439-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030259290", 
          "https://doi.org/10.1007/s11464-015-0439-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-04-07", 
    "datePublishedReg": "2017-04-07", 
    "description": "In this paper we develop a relative Gr\u00f6bner basis method for a wide class of filtered modules. Our general setting covers the cases of modules over rings of differential, difference, inversive difference and difference\u2013differential operators, Weyl algebras and multiparameter twisted Weyl algebras (the last class of rings includes the classes of quantized Weyl algebras and twisted generalized Weyl algebras). In particular, we obtain a Buchberger-type algorithm for constructing relative Gr\u00f6bner bases of filtered free modules.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11786-017-0317-1", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7058908", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136594", 
        "issn": [
          "1661-8270", 
          "1661-8289"
        ], 
        "name": "Mathematics in Computer Science", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "keywords": [
      "Weyl algebra", 
      "difference-differential operators", 
      "Gr\u00f6bner basis method", 
      "free modules", 
      "case of modules", 
      "basis method", 
      "wide class", 
      "Buchberger algorithm", 
      "Gr\u00f6bner bases", 
      "general setting", 
      "algebra", 
      "algorithm", 
      "operators", 
      "class", 
      "multiparameter", 
      "module", 
      "cases", 
      "ring", 
      "basis", 
      "setting", 
      "reduction", 
      "differences", 
      "relative reduction", 
      "paper", 
      "method"
    ], 
    "name": "Relative Reduction and Buchberger\u2019s Algorithm in Filtered Free Modules", 
    "pagination": "329-339", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084519838"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11786-017-0317-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11786-017-0317-1", 
      "https://app.dimensions.ai/details/publication/pub.1084519838"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_728.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11786-017-0317-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11786-017-0317-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11786-017-0317-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11786-017-0317-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11786-017-0317-1'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      21 PREDICATES      52 URIs      41 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11786-017-0317-1 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N34db776b6bc74a86801aa52032643f4d
4 schema:citation sg:pub.10.1007/978-1-4020-6947-5
5 sg:pub.10.1007/s11425-008-0081-4
6 sg:pub.10.1007/s11464-015-0439-1
7 schema:datePublished 2017-04-07
8 schema:datePublishedReg 2017-04-07
9 schema:description In this paper we develop a relative Gröbner basis method for a wide class of filtered modules. Our general setting covers the cases of modules over rings of differential, difference, inversive difference and difference–differential operators, Weyl algebras and multiparameter twisted Weyl algebras (the last class of rings includes the classes of quantized Weyl algebras and twisted generalized Weyl algebras). In particular, we obtain a Buchberger-type algorithm for constructing relative Gröbner bases of filtered free modules.
10 schema:genre article
11 schema:isAccessibleForFree false
12 schema:isPartOf Nc081e1da463e424cba661e71184ae546
13 Ndc2d70388305493ca7c42821ffadb876
14 sg:journal.1136594
15 schema:keywords Buchberger algorithm
16 Gröbner bases
17 Gröbner basis method
18 Weyl algebra
19 algebra
20 algorithm
21 basis
22 basis method
23 case of modules
24 cases
25 class
26 difference-differential operators
27 differences
28 free modules
29 general setting
30 method
31 module
32 multiparameter
33 operators
34 paper
35 reduction
36 relative reduction
37 ring
38 setting
39 wide class
40 schema:name Relative Reduction and Buchberger’s Algorithm in Filtered Free Modules
41 schema:pagination 329-339
42 schema:productId N1c827f55d53944ef8d036fa0659c7486
43 N6eaf087d5c47437683a6e28b49b82fc8
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084519838
45 https://doi.org/10.1007/s11786-017-0317-1
46 schema:sdDatePublished 2022-12-01T06:35
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N5b9e57a55bd542b1a1ad0c3e80a4079c
49 schema:url https://doi.org/10.1007/s11786-017-0317-1
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N1c827f55d53944ef8d036fa0659c7486 schema:name dimensions_id
54 schema:value pub.1084519838
55 rdf:type schema:PropertyValue
56 N34db776b6bc74a86801aa52032643f4d rdf:first N420f4cca32654b1b94285fe3a83aeb71
57 rdf:rest Nfcb5dd8dae414b06b6794db8b70b7080
58 N420f4cca32654b1b94285fe3a83aeb71 schema:affiliation grid-institutes:grid.9970.7
59 schema:familyName Fürst
60 schema:givenName Christoph
61 rdf:type schema:Person
62 N5b9e57a55bd542b1a1ad0c3e80a4079c schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N6eaf087d5c47437683a6e28b49b82fc8 schema:name doi
65 schema:value 10.1007/s11786-017-0317-1
66 rdf:type schema:PropertyValue
67 Nc081e1da463e424cba661e71184ae546 schema:issueNumber 3-4
68 rdf:type schema:PublicationIssue
69 Ndc2d70388305493ca7c42821ffadb876 schema:volumeNumber 11
70 rdf:type schema:PublicationVolume
71 Nfcb5dd8dae414b06b6794db8b70b7080 rdf:first sg:person.013227145261.28
72 rdf:rest rdf:nil
73 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
74 schema:name Mathematical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
77 schema:name Pure Mathematics
78 rdf:type schema:DefinedTerm
79 sg:grant.7058908 http://pending.schema.org/fundedItem sg:pub.10.1007/s11786-017-0317-1
80 rdf:type schema:MonetaryGrant
81 sg:journal.1136594 schema:issn 1661-8270
82 1661-8289
83 schema:name Mathematics in Computer Science
84 schema:publisher Springer Nature
85 rdf:type schema:Periodical
86 sg:person.013227145261.28 schema:affiliation grid-institutes:grid.39936.36
87 schema:familyName Levin
88 schema:givenName Alexander
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013227145261.28
90 rdf:type schema:Person
91 sg:pub.10.1007/978-1-4020-6947-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018820707
92 https://doi.org/10.1007/978-1-4020-6947-5
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/s11425-008-0081-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018088530
95 https://doi.org/10.1007/s11425-008-0081-4
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/s11464-015-0439-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030259290
98 https://doi.org/10.1007/s11464-015-0439-1
99 rdf:type schema:CreativeWork
100 grid-institutes:grid.39936.36 schema:alternateName Department of Mathematics, The Catholic University of America, 20064, Washington, DC, USA
101 schema:name Department of Mathematics, The Catholic University of America, 20064, Washington, DC, USA
102 rdf:type schema:Organization
103 grid-institutes:grid.9970.7 schema:alternateName Research Institute for Symbolic Computation (RISC) Linz, Altenberger Straße 69, 4040, Linz, Austria
104 schema:name Research Institute for Symbolic Computation (RISC) Linz, Altenberger Straße 69, 4040, Linz, Austria
105 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...