On a Hilbert-Type Integral Inequality in the Whole Plane Related to the Extended Riemann Zeta Function View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-08-10

AUTHORS

Michael Th. Rassias, Bicheng Yang

ABSTRACT

In the present paper, a few equivalent conditions of a Hilbert-type integral inequality with the nonhomogeneous kernel in the whole plane are obtained. The best possible constant factor is related to the extended Riemann zeta function. In the form of applications, a few equivalent conditions of a Hilbert-type integral inequality with the homogeneous kernel in the whole plane are deduced. We also consider the operator expressions and a few particular cases. More... »

PAGES

1-18

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11785-018-0830-5

DOI

http://dx.doi.org/10.1007/s11785-018-0830-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106097936


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Advanced Study", 
          "id": "https://www.grid.ac/institutes/grid.78989.37", 
          "name": [
            "Institute of Mathematics, University of Zurich, 8057, Zurich, Switzerland", 
            "Moscow Institute of Physics and Technology, Institutskiy per, d. 9, 141700, Dolgoprudny, Russia", 
            "Institute for Advanced Study, Program in Interdisciplinary Studies, 1 Einstein Dr, 08540, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rassias", 
        "givenName": "Michael Th.", 
        "id": "sg:person.010537175231.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010537175231.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Guangdong Institute of Education", 
          "id": "https://www.grid.ac/institutes/grid.440716.0", 
          "name": [
            "Department of Mathematics, Guangdong University of Education, 510303, Guangzhou, Guangdong, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Bicheng", 
        "id": "sg:person.012302163601.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012302163601.99"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.amc.2013.06.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003439683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2012/871845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010107742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1029-242x-2011-123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013924138", 
          "https://doi.org/10.1186/1029-242x-2011-123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13660-015-0655-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017385034", 
          "https://doi.org/10.1186/s13660-015-0655-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13660-015-0655-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017385034", 
          "https://doi.org/10.1186/s13660-015-0655-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2014.06.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021771642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13660-015-0844-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026742207", 
          "https://doi.org/10.1186/s13660-015-0844-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13660-015-0844-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026742207", 
          "https://doi.org/10.1186/s13660-015-0844-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-04720-1_26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029376035", 
          "https://doi.org/10.1007/978-3-319-04720-1_26"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1155/2011/401428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030260979", 
          "https://doi.org/10.1155/2011/401428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/169061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030745163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2005.07.071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036233466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2006.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039321713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13660-015-0829-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048066655", 
          "https://doi.org/10.1186/s13660-015-0829-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13660-015-0829-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048066655", 
          "https://doi.org/10.1186/s13660-015-0829-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2015.04.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049081279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2013.09.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049606427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7153/jmi-06-38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073623669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7153/jmi-06-38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073623669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7153/jmi-06-38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073623669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7153/jmi-06-38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073623669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7153/jmi-06-38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073623669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.26634/jmat.1.1.1664", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103969205"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-08-10", 
    "datePublishedReg": "2018-08-10", 
    "description": "In the present paper, a few equivalent conditions of a Hilbert-type integral inequality with the nonhomogeneous kernel in the whole plane are obtained. The best possible constant factor is related to the extended Riemann zeta function. In the form of applications, a few equivalent conditions of a Hilbert-type integral inequality with the homogeneous kernel in the whole plane are deduced. We also consider the operator expressions and a few particular cases.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11785-018-0830-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136197", 
        "issn": [
          "1661-8254", 
          "1661-8262"
        ], 
        "name": "Complex Analysis and Operator Theory", 
        "type": "Periodical"
      }
    ], 
    "name": "On a Hilbert-Type Integral Inequality in the Whole Plane Related to the Extended Riemann Zeta Function", 
    "pagination": "1-18", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e62e850c6c2f082bdd5f70eb1104a0f4d7d5dbebc9dc565bd248e9ffee9cfccc"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11785-018-0830-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106097936"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11785-018-0830-5", 
      "https://app.dimensions.ai/details/publication/pub.1106097936"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54328_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11785-018-0830-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11785-018-0830-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11785-018-0830-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11785-018-0830-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11785-018-0830-5'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      21 PREDICATES      40 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11785-018-0830-5 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N55f38d9817c543bba02cdf39c2123f1a
4 schema:citation sg:pub.10.1007/978-3-319-04720-1_26
5 sg:pub.10.1155/2011/401428
6 sg:pub.10.1186/1029-242x-2011-123
7 sg:pub.10.1186/s13660-015-0655-y
8 sg:pub.10.1186/s13660-015-0829-7
9 sg:pub.10.1186/s13660-015-0844-8
10 https://doi.org/10.1016/j.amc.2013.06.010
11 https://doi.org/10.1016/j.amc.2013.09.040
12 https://doi.org/10.1016/j.amc.2014.06.056
13 https://doi.org/10.1016/j.jmaa.2005.07.071
14 https://doi.org/10.1016/j.jmaa.2006.02.006
15 https://doi.org/10.1016/j.jmaa.2015.04.003
16 https://doi.org/10.1155/2012/871845
17 https://doi.org/10.1155/2014/169061
18 https://doi.org/10.26634/jmat.1.1.1664
19 https://doi.org/10.7153/jmi-06-38
20 schema:datePublished 2018-08-10
21 schema:datePublishedReg 2018-08-10
22 schema:description In the present paper, a few equivalent conditions of a Hilbert-type integral inequality with the nonhomogeneous kernel in the whole plane are obtained. The best possible constant factor is related to the extended Riemann zeta function. In the form of applications, a few equivalent conditions of a Hilbert-type integral inequality with the homogeneous kernel in the whole plane are deduced. We also consider the operator expressions and a few particular cases.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf sg:journal.1136197
27 schema:name On a Hilbert-Type Integral Inequality in the Whole Plane Related to the Extended Riemann Zeta Function
28 schema:pagination 1-18
29 schema:productId N74b7c25b8da34e948fc50bb7b41c7f93
30 Ne0416b13889e47e19cf3c3b944dafe09
31 Neda9d28108474a86a0aca3d8e2bee899
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106097936
33 https://doi.org/10.1007/s11785-018-0830-5
34 schema:sdDatePublished 2019-04-11T10:20
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N97168afca9a0456b8718975f39d93f9d
37 schema:url https://link.springer.com/10.1007%2Fs11785-018-0830-5
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N55f38d9817c543bba02cdf39c2123f1a rdf:first sg:person.010537175231.66
42 rdf:rest Na59c017637c041c2b61c230a4fb49e55
43 N74b7c25b8da34e948fc50bb7b41c7f93 schema:name doi
44 schema:value 10.1007/s11785-018-0830-5
45 rdf:type schema:PropertyValue
46 N97168afca9a0456b8718975f39d93f9d schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 Na59c017637c041c2b61c230a4fb49e55 rdf:first sg:person.012302163601.99
49 rdf:rest rdf:nil
50 Ne0416b13889e47e19cf3c3b944dafe09 schema:name readcube_id
51 schema:value e62e850c6c2f082bdd5f70eb1104a0f4d7d5dbebc9dc565bd248e9ffee9cfccc
52 rdf:type schema:PropertyValue
53 Neda9d28108474a86a0aca3d8e2bee899 schema:name dimensions_id
54 schema:value pub.1106097936
55 rdf:type schema:PropertyValue
56 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
57 schema:name Mathematical Sciences
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
60 schema:name Pure Mathematics
61 rdf:type schema:DefinedTerm
62 sg:journal.1136197 schema:issn 1661-8254
63 1661-8262
64 schema:name Complex Analysis and Operator Theory
65 rdf:type schema:Periodical
66 sg:person.010537175231.66 schema:affiliation https://www.grid.ac/institutes/grid.78989.37
67 schema:familyName Rassias
68 schema:givenName Michael Th.
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010537175231.66
70 rdf:type schema:Person
71 sg:person.012302163601.99 schema:affiliation https://www.grid.ac/institutes/grid.440716.0
72 schema:familyName Yang
73 schema:givenName Bicheng
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012302163601.99
75 rdf:type schema:Person
76 sg:pub.10.1007/978-3-319-04720-1_26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029376035
77 https://doi.org/10.1007/978-3-319-04720-1_26
78 rdf:type schema:CreativeWork
79 sg:pub.10.1155/2011/401428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030260979
80 https://doi.org/10.1155/2011/401428
81 rdf:type schema:CreativeWork
82 sg:pub.10.1186/1029-242x-2011-123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013924138
83 https://doi.org/10.1186/1029-242x-2011-123
84 rdf:type schema:CreativeWork
85 sg:pub.10.1186/s13660-015-0655-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1017385034
86 https://doi.org/10.1186/s13660-015-0655-y
87 rdf:type schema:CreativeWork
88 sg:pub.10.1186/s13660-015-0829-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048066655
89 https://doi.org/10.1186/s13660-015-0829-7
90 rdf:type schema:CreativeWork
91 sg:pub.10.1186/s13660-015-0844-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026742207
92 https://doi.org/10.1186/s13660-015-0844-8
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/j.amc.2013.06.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003439683
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/j.amc.2013.09.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049606427
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/j.amc.2014.06.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021771642
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.jmaa.2005.07.071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036233466
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.jmaa.2006.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039321713
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.jmaa.2015.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049081279
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1155/2012/871845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010107742
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1155/2014/169061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030745163
109 rdf:type schema:CreativeWork
110 https://doi.org/10.26634/jmat.1.1.1664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103969205
111 rdf:type schema:CreativeWork
112 https://doi.org/10.7153/jmi-06-38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073623669
113 rdf:type schema:CreativeWork
114 https://www.grid.ac/institutes/grid.440716.0 schema:alternateName Guangdong Institute of Education
115 schema:name Department of Mathematics, Guangdong University of Education, 510303, Guangzhou, Guangdong, People’s Republic of China
116 rdf:type schema:Organization
117 https://www.grid.ac/institutes/grid.78989.37 schema:alternateName Institute for Advanced Study
118 schema:name Institute for Advanced Study, Program in Interdisciplinary Studies, 1 Einstein Dr, 08540, Princeton, NJ, USA
119 Institute of Mathematics, University of Zurich, 8057, Zurich, Switzerland
120 Moscow Institute of Physics and Technology, Institutskiy per, d. 9, 141700, Dolgoprudny, Russia
121 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...